
applied  
sciences

Article

Empowering Predictive Maintenance: A Hybrid
Method to Diagnose Abnormal Situations

Dennys Wallace Duncan Imbassahy 1 , Henrique Costa Marques 1,* ,
Guilherme Conceição Rocha 1 and Alberto Martinetti 2

1 Logistics Engineering Laboratory, Aeronautics Institute of Technology,
São José dos Campos/SP 12.228-900, Brazil; dwduncan@ita.br (D.W.D.I.); grocha@ita.br (G.C.R.)

2 Design, Production and Management Department, University of TWENTE,
7522 NN Enschede, The Netherlands; a.martinetti@utwente.nl

* Correspondence: hmarques@ita.br; Tel.: +55-12-3947-5763

Received: 31 July 2020; Accepted: 30 September 2020; Published: 3 October 2020
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Abstract: Aerospace systems are composed of hundreds or thousands of components and complex
subsystems which need an appropriate health monitoring capability to enable safe operation in
various conditions. In terms of monitoring systems, it is possible to find a considerable number of
state-of-the-art works in the literature related to ad-hoc solutions. Still, it is challenging to reuse
them even with subtle differences in analogous subsystems or components. This paper proposes the
Generic Anomaly Detection Hybridization Algorithm (GADHA) aiming to build a more reusable
algorithm to support anomaly detection. The solution consists of analyzing different supervised
machine learning classification algorithms combined in ensemble techniques, with a physical model
when available, and two levels of a decision to estimate the current state of the monitored system.
Finally, the proposed algorithm assures at least equal, or, more typically, better, overall accuracy in
fault detection and isolation than the application of such algorithms alone, through few adaptations.
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1. Introduction

In the field of Prognostics and Health Management (PHM), the key is to be capable of predicting
the Remaining Useful Life (RUL) of a system. Even knowing that it is possible to establish prognostics
without identifying the root cause, the understanding of the way the system is degrading gives an
advantage in terms of health monitoring system development. Knowing the physical phenomena
allows us to introduce a degrading model to support the data acquired during system utilization and
better tuning the algorithms in charge of fault detection [1].

Without the degrading model, it is also possible to use statistics to learn the degradation behavior
of a system of interest. Still, it would be necessary to have data available in many different situations.
The data-driven approach, in this case, could manage the lack of the physics-model, but an anomaly
may not be satisfactory classified.

To have both approaches helps in troubleshooting and also in predictive maintenance of assets.
The recent development of the PHM field brought a series of new information to support maintainers
in the task of identifying/isolating the root causes of a specific failure The hybrid approach, using both
model-based (physics model) and data-driven (collected data during operation) approaches, enhances a
health monitoring system to accomplish the goal of detecting faults and generating alerts [1,2].
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Since predictive maintenance makes use of fault detection to help RUL prediction, the goal is to
establish in advance the discovery of a faulty condition on the target system. The earlier the detection,
the more time to plan resource allocation and schedule maintenance tasks [3]. The process to detect
the fault and identify its root cause is called Fault-Detection and Isolation (FDI) [4]. An anomalous
behavior is not necessarily a fault, and the present work uses an FDI method to establish a classification
algorithm. The approach is capable of distinguishing faults from abnormal behaviors that are not faulty
conditions of the system but can produce a system degradation and also impact the system’s RUL.

The FDI method makes use of sensory data that can bring noise, bias and sensor calibration
problems [3]. Because each system has its characteristics, it is hard to develop a solution that can be
widely adopted. The typical approach is to have algorithms adapted for each new case, even if the
system is similar to another one that already has an implemented solution. If the system is not installed
in the same way, with the same conditions, it is possible to have different noise and environment
conditions that give different readings to the sensor.

The present work is an attempt to help the reuse of an FDI infrastructure and is the initial result
of a hybrid approach called the Generic Anomaly Detection Hybridization Algorithm (GADHA).
The next section will provide a literature review of solutions in the FDI field using hybrid methods.
Then, the Material and Methods section describes the GADHA approach, and the results section
shows the results achieved in a study case of fault detection and isolation on a spring-mass system.
The discussion section brings the main achievements, and a brief conclusion section provides the main
contributions of the work.

2. Literature Review

In a literature review about Fault Detection and Isolation, it was observed that most of the current
solutions were very specific for a closed system or even a particular situation. It means that it is hard
to reuse the solution. Even for a similar system, with a few different parameters, it would be necessary
to implement adaptations. However, a minimal generalization becomes a difficult task.

The aeronautical industry was not completely unaware of this and had some initiatives to provide
frameworks and recommendations that any customer, manufacturer, or stakeholder could adopt
if desired. Even so, different protocols and standards were adopted depending mostly on the region
(America or Europe) and segment (commercial or military). Nevertheless, two relevant frameworks
provide significant levels of protocols in different layers to standardize implementations, products,
communications, interface, processes, projects, and other subjects of interest.

The first and more comprehensive one is the Integrated Vehicle Health Management (IVHM).
The National Aeronautics and Space Administration (NASA) was the first one to adopt and implement
this concept. Nowadays, it has strong support from the Society of Automotive Engineers (SAE), and it
was taken in different stages in the aviation industry [5–7].

The second initiative comes from the Machinery Information Management Open Systems
Alliance (MIMOSA). Its proposed standards, namely Open System Architecture for Condition-Based
Maintenance (OSA-CBM) and Open System Architecture for Enterprise Application Integration
(OSA-EAI), have established protocols to support asset management [8].

The OSA-CBM framework is based on six layers depicted in Figure 1. From layers 1 to 3, the data
flow is considering each component as an independent system, and its primary concern is to best
estimate the actual state for the given parts. From layers 4 to 6, a gradual increment on data fusion takes
place to raise awareness of the whole monitored system situation. In the end, it is up to the responsible
manager to evaluate and decide the actions or inaction that will be applied to the respective system,
restarting the cycle again.

It is essential to highlight that diagnosis takes place mostly at layer 4, starting in layer 3, while the
system is being operated in the OSA-CBM framework. In terms of asset management, it would
be necessary to establish the history of the system operation and also previous knowledge in the
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system’s reliability. Such capability is acquired from the use of the OSA-EAI framework and IVHM
state-of-the-art implementations.

Figure 1. Open System Architecture for Condition-Based Maintenance (OSA-CBM) framework.

All those initiatives become crucial in an age of interoperable systems, and still more challenging
because an Air Force, or an air transportation company, manages many different aircraft fleets,
from varied manufacturers, for several environments and purposes. On the other hand, systems that
apply the same protocol, standard architecture, and user interfaces in the same situation are simpler to
support, since they can share a set of standard solutions and even components in some cases.

The term anomaly detection refers to the capability to identify anomalies based on the acquired
data through pattern recognition that does not conform to the expected system behavior [9]. From all
circumstances exposed so far in the anomaly detection and diagnosis fields, it is pronounced the
number of anomaly detection algorithms and methodologies aimed at ad-hoc solutions. The best way
to analyze this argument is by dividing those studies into three main approaches:

• Data-Driven techniques: It is independent of a physical model, and it uses the historical records
and online data to solve anomaly detection problems. The system or component is irrelevant from
this perspective, and generalization can only be considered if data-sets are the same in all aspects;

• Model-Based techniques: It has sets of equations that explain mostly the behavior of a
physical system. The data are analyzed through these equations. Such models need to be
as representative as possible to the system, but this rarely happens due to noise, lack of complete
knowledge of phenomenons involved, disturbances, and even impossibility to perform the
necessary measurements;

• Hybrid techniques: It is the combination of the other two techniques with their benefits and
limitations. However, there are different ways to perform hybridization. So by abstracting the
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data-set and model, it is possible to extract the interaction architecture between both algorithms
and check the feasibility and compatibility with the proposed system.

Hybrid approaches are taking place more often once data-driven techniques can explain part of
that uncontrolled behavior presented in model-based approaches. The assumption that such methods
could never reach a perfect representation in the real world is very plausible, and it leads to the
assumption that more optimization is always possible. Although, it can be unnecessary if requirements
do not demand it.

The concept of the wisdom of the crowd from statistics is interpreted in machine learning as
Ensemble Learning. Considering a choice for one of the available algorithms in the literature, instead
of training and applying only one instance of it, a considerable number of inducers are created and
trained to obtain various countable results from different approaches. The work [10], in their survey
about ensemble learning, points out the premise that the combination of multiple models compensates
the error of a single inducer.

From this perspective, the present work was developed looking to generate a framework to
support fault classification with a hybrid approach. The model-based capability to establish the basic
behavior of the system will be combined with ensemble techniques that can mix a set of different
data-driven methods, depending on the system characteristics.

Varied methods to organize them can be found in the literature, and this is one of the most
relevant aspects observed for this work. It addresses the ability of ensemble learning in generalizing
many different fashion distinct algorithms or even different versions of one of them. Besides the fact of
their straightforward application, they provided the necessary hint to tackle the research problem in
this study.

Ensemble learning is a broad term in machine learning used for the combination of multiples
inducers to make a decision. Thereby, the primary purpose of this technique is to try to use several
inducers to compensate for the errors of one or a few of them [10].

There are three major approaches for ensemble methods: boosting, bagging, and stacking.
All the others can be considered derivations, adaptations, or a mix of them. Table 1 resumes these
meta-algorithms used in [11–13].

Table 1. Ensemble methods meta-algorithms.

Meta-Algorithm Inducers Description

Boosting Often homogeneous A model depends on the previous one
Bagging Often homogeneous Independent weak learns, they can

be trained in parallel
Stacking Often heterogeneous Independent weak learns, they can

be trained in parallel

Ensemble methods have been used to handle FDI problems in several publications. The work [13]
did research comparing different machine learning classifiers, and the best results were achieved
using ensemble techniques to detect submersible electrical pump failures. The work [12] developed an
ensemble of dynamic neural networks for FDI from gas turbine engines. His approach claims to be
the first one to use ensemble methods through system identification to generate residuals instead of
evaluating them like previous works. In the time of paper writing, ensembles can be considered as the
state-of-the-art technique for a broad set of machine learning and real-life challenges [10].

Adaptative Neuro-Fuzzy Inference System (ANFIS) aggregates the Artificial Neural Networks
(ANN) concept of robustness, adaptation, non-linear mapping, and at the same time as it is based
on the Takagi–Sugeno–Kang inference model [14]. The Fuzzy Inference System (FIS), or fuzzy logic,
can handle uncertainties and imprecise pieces of information. While FIS requires excellent knowledge
to have an appropriate set of rules to achieve better accuracy, ANFIS does not demand an expert since
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it inherits the learning ability from ANN. It means that ANFIS can shape its rules through training
algorithms as back-propagation applied to ANN.

ANFIS have been applied in many recent works to FDI, e.g., [14–16]. All of them are in an
ad-hoc approach since such works have used ANFIS straightforwardly to analyze system output data.
However, it is not necessary to generalize ANFIS in an FDI perspective if other methods handle
system output variables. Reference [17] has applied fuzzy decision making for component selection.
From this perspective, it is analog that the decisions taken from previous methods can be analyzed as
such components to make a final decision.

Some model-based techniques typically depend on other methods since they are thoroughly
focused on residuals generations. Reference [18] is a good example of such a case where a Support
Vector Machine (SVM) and Consistency-Based Fault Isolation (CBFI) are employed to perform an
evaluation. In brief, CBFI compares the residuals with some subsets of faults that can “explain”
the residuals.

Three works [1,18,19] employ structural analysis as their physical model to generate residuals.
The main differences lie in the choices of data-driven algorithms that select the best residual generators
and system where they are applicable. Although [1,18] can be applied for any complex system,
all structural analyses require a thorough knowledge of the physical phenomena involved in such a
system so that the greatest number of algebraic equations can be included into the model.

Ref. [20] combined a state observer and an ANN to detect and isolate small faults of actuators
in closed-loop control systems. The role of the ANN is to analyze residuals, and the model-based
classification results in the decision reasoning process. Therefore, it does not involve interaction
between techniques since one does not affect others.

The work [21] proposed a hybrid approach to control and detect anomalies for fuel cell stack
cooling control. They employed Active Disturbance Rejection Control (ADRC), a data-driven technique,
to estimate uncertainty and evaluate residuals to a Proportional Integral Derivative (PID) control.
The Extended State Observer (ESO) represents the physical model responsible for the residual
generation. The interaction between ADRC and ESO inside a closed loop promotes a great synergy.
Finally, the work [22] conducted a dedicated study about model-based and data-driven fusion
approaches to FDI.

3. Method

The proposed method is a heuristic solution that combines different supervised machine learning
techniques and an optional physical model to classify abnormal situations in complex systems.
The abnormal situation (or anomaly) may be a system degradation, a fault or an operational deviation.
For this reason, it was named Generic Anomaly Detection Hybridization Algorithm (GADHA).
The detection method can be used in conjunction with Health Assessment and Prognostic Assessment
techniques to determine the remaining useful life (RUL) of the equipment and thus to assist
Condition-Based Maintenance implementation.

3.1. General Method Description

Figure 2 shows the general concept of GADHA. It is divided into four processes stages that are
based on the OSA-CBM framework. The first two stages have the same name and functionalities
of OSA-CBM layers of Data Acquisition and Data Manipulation. The two last stages of GADHA
(First Instance Classification and Final Instance Classification) performs OSA-CBM State Detection
layer, combining data-driven and model-based detection. Each process stage is composed of one or
many activities, as identified and detailed in Figure 2.

The output of GADHA corresponds to the system state detection. If the detected state
is an abnormal condition, it may correspond to an incipient system failure or an abnormal
operating condition. The abnormal condition is then associated with a particular equipment
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degradation (Health Assessment). Finally, based on the equipment failure mechanism and the expected
equipment operational condition, one can estimate the system Prognostic Assessment (RUL).

Figure 2. Generic Anomaly Detection Hybridization Algorithm (GADHA) approach.

3.2. Method Detailed Description

The steps of GADHA, as exhibited in Figure 2, are detailed in the following sections. The activities
are labeled only by numbers and the title of the main process to reduce words on the figure.

3.2.1. Data-Acquisition

Data acquisition process is the process of measuring sensor data and transforming analogical data
into digital information. The details and main challenges associated with this process is out of the
scope of this work. This process is composed only by Activity 1 (Raw Data Acquisition), as exhibited
in Figure 2.

3.2.2. Data Manipulation

Data Manipulation step can be performed either by a data-driven pre-processing (Activity 2) or
by a model-based pre-processing (Activity 3). On each activity, data manipulation goal is either to
reduce input data dimensionality or to transform input data using filters on a data cleaning approach.

Activity 2—Data-Driven Pre-processing

When data-driven pre-processing techniques are used to reduce input data dimensionality, it is
done without any knowledge about the system design or behavior, and it is also called data-driven
feature extraction.

Linear Discriminant Analysis (LDA) is often used as a data-driven pre-processing step to reduce
the dimensionality of input data in classification tasks, which also demands a supervised training.
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This approach looks for the component axes that maximize data variance; likewise, for axes that
maximize multiple class separation. However, there are many cases where LDA is the classification
algorithm due to all those characteristics [23]. The analyst may choose several other different techniques
to reduce the dimensionality of input data based on feature extraction techniques that do not depend
on the specialized knowledge about the system.

When data-driven pre-processing techniques are used to filter input data, on a data
cleaning approach, it is done by implementing filters that do not depend on any knowledge about
the system. For instance, winsorizing transformations is often used to reduce the effect of possible
spurious outliers.

3.2.3. First Instance Classification

In this stage, GADHA counts with ensemble techniques and with the physical model to predict
the state-condition of the system. It is necessary to thoroughly estimate the initial state parameters of
the physical model once the behavior of the system is an outgrowth of them.

There are scenarios where the position measurement is straightforward, and the estimation of
those initial values becomes a noise reduction issue. However, there is one scenario that only provides
accelerometer and gyroscope measurements. In this case, the estimation becomes more laborious and
requires more steps. Thus, it will demonstrate the data-driven methods responsible for estimating the
release height, when just acceleration is available.

Activity 3—Model-Based Pre-Processing

When model-based pre-processing techniques are used to reduce input data dimensionality,
it is done based on specialized knowledge about the system design or behavior, and it is also called
model-based feature extraction. This technical knowledge is expressed either by a set of rules to
determine if a particular feature is present or not or by the definition of acceptable thresholds based on
system noise modeling. When model-based pre-processing techniques are used to filter input data,
on a data cleaning approach, it is done by implementing filters based on the system noise and expected
behavioral characteristics.

Activities 2 and 3 are not mutually exclusive and can be performed in conjunction to reduce
input data dimensionality (features extraction) or to filter input data. This means that if one wishes to
create an embracing number of extracted features, he may consists ofder features extracted by either
data-driven pre-processing or by model-based pre-processing. Furthemore, the data cleaning approach
may encompass both data-driven filters as well as model-based filters.

Activity 4—Ensemble Learning Classification (Data-Driven)

The ensemble learning classification performed on Activity 4 of GADHA receives as inputs all
features extracted from Activities 2 and 3, and classify system state, estimating what is the most
probable state among a finite and enumerable list of possible system states.

To perform this classification, initially, ensembles shall be created considering sets of machine
learning inducers. Each ensemble groups a certain number of inducers, and each inducer attempts to
estimate system state based on input data. The final classification of each ensemble corresponds to
the best estimate considering the ensemble inducers estimates as well as the performance metrics of
each inducer. In the scope of this work, the final classification of each ensemble is called the committee
classification technique.

Inducers or learners are machine learning algorithms in the scope of this work. They are split
into two categories: parametric and non-parametric, depending if the algorithm is parametric or
not. Support Vector Machine (SVM) and Decision-Tree (DT) are examples of machine learning
non-parametric algorithms, while Artificial Neural Network (ANN) and Naive Bayes (NB) are
examples of parametric inducers.
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At GADHA, it is proposed the usage of ensembles composed of three inducers for simplicity
because even values are more prone to draws, and three is the smallest non-unit positive odd value of
ensemble inducers quantity. These three inducers ensembles are called Ensemble Triads (ET).

Based on the above definitions, Ensemble Triads can be classified as Heterogeneous ET,
Homogeneous non-parametric ET, or Homogeneous parametric ET. Figure 3 shows the ET
general concept.

Figure 3. Ensemble triads general concept.

According to GADHA, the Ensemble Learning Classification activity is performed based on
several ETs of different types (heterogeneous, homogeneous non-parametric, homogeneous parametric),
built randomly according to the following hyperparameters: number of triads to build, set of parametric
algorithms, set of non-parametric algorithms and proportion of heterogeneous, homogeneous
non-parametric, and homogeneous parametric ET to build, expressed by the proportions λ1, λ2,
and λ3. Table 2 illustrates the Ensemble Triads hyperparameters.

Table 2. Ensemble Triads hyperparameters.

Hyperparameter Default Value Description

N 1000 Number of triads to build
Θi {∅} Set of parametric functions
Γj {∅} Set of non-parametric functions
Λ {λ1λ2λ3} Set of proportions among the three main triads set,

being that λ1 + λ2 + λ3 = 1
λ1 0.5 Heterogeneous triads proportion
λ2 0.25 Homogeneous non-parametric triads proportion
λ3 0.25 Homogeneous parametric triads proportion

According to GADHA notation, the set Γ corresponds to the set of non-parametric functions γ(−→v ),
and the set Θ is the set of parametric functions θ(−→v ). The feature space

−→
V ι may have three different

dimensions depending on which data acquisition is made from sensors. The function argument −→v is a
vector that can be any subspace feature, defined in Equation (1).

Θi = {θ1(
−→v 1), ..., θi(

−→v i) | −→v i ⊂
−→
V ι, −→v 1 6= −→v i, i ∈ N and i > 1};

Γj = {γ1(
−→v 1), ..., γj(

−→v j) | −→v j ⊂
−→
V ι, j ∈ N and j > 1};

(1)

The value of ι indicates the same dimensions for both sets. It is not a hyper-parameter of the
algorithm, but the sum up of all declared functions inside any category. One example of possible
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functions for Θ or Γ can be visualized in Equation (2). In the example of Equation (2), parametric
functions are Artificial Neural Networks (ANN) and Naive Bayes (NB), while non-parametric functions
are Support Vector Machine (SVM) and Decision Tree (DT). The analyst may choose other parametric
and/or non-parametric functions as, for instance, Linear Discriminant Analysis (LDA), as done on the
case study of this work.

Θi = {ANN, NB}, i = 2

Γj = {SVM, DT}, j = 2
(2)

For the heterogeneous ensemble triads, the same input data are used for all inducers.
Each inducer of each heterogeneous ET will receive as input the same subset of features extracted on
Activities 2 and 3 of GADHA. The input vector consumed by each inducer is a subset of all features
vector and is called the Input Feature Vector. Therefore, the heterogeneous ET has only one Input
Feature Vector consumed by all inducers.

On the other hand, for the homogeneous ensemble triads, whether the ET is parametric or not,
different input vectors are used for different inducers, once the same inducer would be prone to
perform the same classification when subjected to the same data. This means that each inducer of each
homogeneous ET will receive as input a different subset of features extracted on Activities 2 and 3
of GADHA. The input vector consumed by each inducer is a subset of all features vector and is called
the Input Feature Vector. Therefore, the homogeneous ET has three different Input Feature Vectors,
one for each inducer.

The final classification of each ensemble (Committee Classification Technique) considers both
the ensemble inducers estimates and the performance metrics of each inducer. A particular case of
this committee classification technique corresponds to the majority voting, where the performance
metric of the inducers will only be taken into account to select the best performance inducer if each ET
inducer provides a different classification.

The inducers performance metrics correspond to true-positives (TP), false-positives (FP),
true-negatives (TN), false-negatives (FN), precision (PCS), recall (RCA), F1-score (F1),
and accuracy (ACC). Table 3 summarizes all of them according to a confusion matrix Cn,n,
true values represented by columns, predict values by rows, and n is the number of rows
and columns, respectively. These equations and definitions also can be found in [12,13,24].

Table 3. Machine Learning algorithms performance metrics.

Metric Equation

TP TPi = Ci,i
TN TNi = ∑n

i=1 ∑n
j=1 Ci,j −∑n

j=1 Ci,j 6=i −∑n
j=1 Cj,i 6=j

FP FPi = ∑n
j=1 Ci,j 6=i

FN FNi = ∑n
j=1 Cj,i 6= j

PCS PCSi =
TPi

TPi+FPi

RCA RCAi =
TPi

TPi+FNi

F1 F1i =
PCSi ·RCAi

PCSi+RCAi
ACC ACC = TP+TN

TP+TN+FP+FN

At the end of the committee classification, it will be associated with a single system state
classification per ensemble triad. Each ensemble triad is defined in performance metrics such as the
inducer’s metrics according to Table 3. If ensemble triad performance is below a minimum threshold,
then the state classification associated with the ET is considered as under suspect, which means that
ET was not able to make a consistent decision.

Finally, taking into consideration all ensemble triads, it is possible to create a vector that can
express overall ET classification performance for each possible system state. This vector is represented
by
−→
d s+1, where s is the total system possible states. The first s elements of this vector correspond to
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the percentage of ensemble triads that classified the system state corresponding to the vector element.
The element s + 1 corresponds to the percentage of triads that were not able to make a consistent
decision (undefined state), according to the criteria defined previously.

All triad decisions have the same influence, and they have counted as votes for each state n such a
manner that lack of decisions take count. The votes received by each state are held in σi, while ξ holds
the total number of no-decisions. Thus, the vector elements from y1 to ys (inclusive) are the respective
state votes proportion, while the element ys+1 is the undefined state votes proportion.

−→
d s+1 = {y1, y2, ..., ys, ys+1} | Σs+1

i=1 yi = 1, 0 ≤ yi ≤ 1

yi =

{
σi
N for i ≤ s
ξ
N for i = s + 1

(3)

Activity 5—Residues Estimation Based on Physical Models

The ensemble learning classification performed on Activity 4 of GADHA receives as inputs all
features extracted from Activities 2 and 3, and classify system state, estimating what is the most
probable state among a finite and enumerable list of possible system states.

Residues estimation is made by comparing real system state values with expected values of each
system state estimated by the respective physical model. This comparison is made straightforwardly,
subtracting one value from the other.

Physical models are typically achieved through dynamic equations and state variables, but can
also be represented in different ways, using, for instance, lookup tables.

In the case study of this work, the physical model is a linear system representing a generic three
degree of freedom mass-spring-damper model. Such a model is suitable to represent many aircraft
landing-gear part numbers.

Activity 6—Ensemble Learning Classification (Model-Based)

The ensemble learning classification performed on Activity 6 of GADHA is the same process as
described on Activity 4, except by the fact that the inputs of this process are the residues estimated
on Activity 5. Therefore, residues correspond to features to be used for system state classification on
each ET.

3.2.4. Final Instance Classification

The final instance classification is a process made of two activities: Decision Reasoning (Activity 7)
and State Detection (Activity 8).

Activity 7—Decision Reasoning

Decision Reasoning receives vector
−→
d s+1 from both data-driven and model-based ET

(activities 4 and 6 respectively). Alternatively, instead of receiving the output of activity 6, the Decision
Reasoning process can receive the residues values vector directly from Activity 5, as shown in Figure 2.

As an output, the Decision Reasoning process delivers to the next activity a harmonized decision
vector

−→
d s+1, considering both data-driven and model-based preliminary results. This task can be

performed considering either a linear combination of model-based and data-driven decision vectors
or a revisiting process of the ET results, applying, for instance, ANFIS (Artificial Network Fuzzy
Inference System) algorithm to estimate system state.

If an algorithm is used to estimate system state directly from the output of Activities 4, 5 and 6,
as for instance ANFIS, then Activity 7 and Activity 8 are merged on a single activity that is able to
provide system state detection.
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Activity 8—State Detection

The State Detection process selects the most probable state from the harmonized decision vector
and informs it to the end-user, also estimating the confidence level of this estimate. As highlighted
before, data fusion algorithms as ANFIS can also be used on this task, as detailed in the sequence.

ANFIS Semantic Aspects

One of the best strengths of the Fuzzy Inference System (FIS) is its capability to handle subject
measurements [6], and this is the main reason to choose it as a manager—its decision is based on
its staff. In this method, the physical model, ET1, and ET2 are their staff whose opinions are expressed
through vector

−→
d s+1.

The Membership Function (MF) performs the fuzzification step [25]. This technique defines two
sets of Gaussian MF, both with the same size, where Ω1 = Eliminated, Candidate, Winner corresponds
to the system-state estimated and Ω2 = Negligible, Acceptable, Unacceptable corresponds to the
indecision degrees.

Considering those same vectors from a semantic perspective, it is possible to make the
sentences described in Table 4. Different types of membership functions can be used to support
the fuzzification process.

On Table 4, di,j corresponds to the result vector of first instance classification algorithm,
where index i corresponds to the vector origin (physical model, ET1, and ET2), while index j
corresponds to the system state under analysis. If the system has s states, j varies from 1 to s + 1,
where s + 1 corresponds to undefined state (indecision grade).

Table 4 can be very assertive when one of its elements declares a winner or an eliminated
system-state. At the same time, it can be very subjective when declaring a candidate. It is not
necessary to relate all system-states among each other since the MFs can provide a certain level of
mutual-exclusivity when the sentences are considered assertive. It impacts the number of necessary
rules that defines the size of 2nd, 3rd, and 4th layers. So, the set of useful rules for this methodology is
the combination of correspondents system-states and correspondents indecision degree, as seen in
Figure 4.

Figure 4. ANFIS applied in this technique.
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Table 4. Semantic perspective.

Sentence

d1,1 is an eliminated system-state
d1,2 is a candidate system-state
d1,3 is a candidate system-state

d1,4 is an acceptable indecision grade
d2,1 is an eliminated system-state
d2,2 is a candidate system-state
d2,3 is a candidate system-state

d2,4 is an acceptable indecision grade
d3,1 is a eliminated system-state
d3,2 is a candidate system-state

d3,3 is a winner system-state
d3,4 is a negligible indecision grade

ANFIS Learning Algorithm

The ANFIS training makes use of Minimum Square (MS) to set its linear parameter in 4th layer
and gradient descent (GD) algorithm to train its non-linear parameters in 1st layer. Primarily, it is
performed a forward phase where non-linear parameters are kept fixed. After the 3rd layer processes
its outputs, the linear parameters are calculated through MS, and the error is calculated when the 5th
layer outputs its value. After that, the backward phase takes place and propagates the error to the
1st layer, where the MF parameters are adjusted. The learning algorithm applied in this technique can
be visualized with more details in the following works: [26,27].

4. Case Study

The primary purpose of this study case is not about a landing-gear (LNG) development, but it is
about how the actual state of a common landing-gear can be, as much as possible, correctly estimated.
However, this specific component was selected to evaluate the proposed method accuracy in a more
concrete case.

4.1. Physical Model

The physical model displays the estimated state and also a proportional number of how close the
predicted value output is to the measured data. This number is the Normalized Root Mean Square
Error (NRMSE) given in Equation (4) [28], where p is the vector from predict value, m is the vector
from measured data, and both have n elements.

NRMSE =

√
∑n

i=1(pi −mi)2√
∑n

i=1(pi − p̂)2
(4)

The outlined abnormal situations considered in this case study were devised to meet complex
scenarios typically found in landing-gears operation. Abnormal situations addressed in this case
study have, at least, one of the following characteristics: high dimensionality, high effort to
distinguish boundaries, indirect measurements, and time-variant boundaries. Table 5 has the expected
system states.

Those states were physically simulated in an FDI Workbench, through different release heights,
changing springs, and changing weight on the first platform. The physical model can represent any
linear or linearized system. Nevertheless, the focus is going to be over a generic three degree of
freedom mass-spring-damper model, which is the most suitable for many landing-gear types. There is
an assumption that the model parameters are known.
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Table 5. Expected system states.

Label State Isolation Description Quantity

A1 System Degradation Spring 1 Spring 1 insufficient stiffness 750
A2 System Degradation Spring 2 Spring 2 insufficient stiffness 740
A3 Normal Operation under expected condition 740
A4 Operational Deviation LNG High impact due to height 740
A5 Operational Deviation LNG High impact due to weight 740

Figure 5 presents the analytical perspective of the experiment. There are three specific physical
conditions occurring in different time-space, resulting in a Linear-Parameter-Varying (LPV) approach
for this method.

Figure 5. System dynamics.

Condition 1 occurs from release moment until, just precisely, before the first impact of m3 over
the floor. Free-fall equations rule this behavior. Unlike conditions 2 and 3, the system stabilizes very
fast in L1 and L2, that is, oscillations after release are negligible. Condition 2 remains while m3 keeps
contact to the floor. Otherwise, the equations in condition 3 describe the physics. It is relevant to notice
that condition 3 can replace condition 2 if oscillations have to be considered, but this situation increases
the model complexity.

Conditions 2 and 3 have two great differences. One of them is that k3 and d3 are floor stiffness
and floor viscous damping coefficients respectively, it is not considered for condition 3, and the
second one is that condition 2 has its equilibrium position aligned with specific positions, defined in
parameters pn, while condition 3 has its equilibrium through space-intervals defined in L1 and L2

disregarding any specific state-position. Table 6 details all useful parameters and variables of the
method until this moment.

Abnormal situations A1 and A2 are related to wear problems that correspond to
equipment degradation. A4 and A5 indicate abnormal situations corresponding to the system operation
exceeding the safe operating usage limit.

It is important to highlight that the labels from A1 to A5 correspond to possible states of the
target system. From this perspective, abnormal or normal situations are not relevant to the algorithm
since the assigned task is just to classify the actual system state in this study case.
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Table 6. Parameters and variables of the Physical Model.

Variables Domain Description
& Symbols or Space

n n ∈ N|1 ≤ n ≤ 3 Degree of freedom index
h0 hn ∈ R Release height
kn kn ∈ R Spring stiffness coefficient
dn dn ∈ R Viscous damping coefficient
mn mn ∈ R Mass of the body
Sn Sn ∈ R Spring force
Dn Dn ∈ R Damping force
Wn Wn ∈ R Weight force of mass mn
xn xn ∈ R Actual body position or state-variable

X(t) X(t) ⊂ R State vector
pn pn ∈ R Body position when in static equilibrium on the ground
Ln Ln ∈ R Spring length between mn and mn+1 disregarding any

external forces effect
∆hn ∆hn ∈ R Difference between release height and pn
Hc Hc ⊂ R, c ∈ N|1 ≤ n ≤ 3 Observation matrix with respect to condition c
zt zt ∈ R Measurement vector

However, each state represents a possible normal or abnormal situation that must be monitored
in an operational environment. In this way, labels A1 and A2 represent an abnormal situation due to
spring degradation, while labels A4 and A5 represent abnormal situations due to operational deviation.

The training, validation and test matrices data-set proportions are 70%, 15%, and 15%,
respectively, and they were built in a random process. Despite being a shallow neural network,
the Adaptive Moment Estimation (ADAM), generally employed in deep learning techniques, achieved
the best results to train the ANN. The accuracy in this step strongly impacts the AM, since the
calculations depend on the initial state vector of the system.

The essential purpose behind sets Θ and Γ is to implement different strategies, simultaneously,
while the data-sets are divided into smaller random subgroups of data. Table 7 lists the selected
algorithms to compose Θ and Γ weak learners.

Table 7. Selected algorithms.

Set Inducer Motivation

Θ ANN All input data needs to be in the same range, non-linear, discriminant
paradigm, parametric, no distributions assumptions about the
model, but data needs to be balanced through different classes.

Θ LDA Gaussian distribution and constant variance assumptions for each
class, generative paradigm, parametric, it provides dimensionality
reduction and linear differentiation between classes.

Γ DT No distributions assumptions, discriminative paradigm,
non-parametric, low sensitivity to unbalanced data; however,
it becomes unstable when trained with different amounts of data.

Γ SVM-RBF No distributions assumptions, discriminative paradigm,
non-parametric, it increases dimensionality to help distinguish data,
it depends on the Euclidean distance between two points.

As seen in Table 7, all of them have some complementary capabilities over each other, and they
were built according to the configurations described in Tables 8–11.

LDA does not have hyperparameters to adjust to due to its formulation that works similarly to
logistic regression. However, it is possible to choose some variants that make changes in the covariance
matrix between classes (e.g., quadratic discriminant analysis QDA).
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Table 8. ANN configuration.

Phase Description Value

Setup
Number of input features 4 to 8 randomness
Number of hidden layers (HL) 1
Number of neurons in HL 5
HL activation function Tangent hyperbolic
Out layer size 5 (equals the number of classes)
Out layer function Softmax

Training
Method Back-propagation (Gradient descent), ADAM optimizer
Data distribution 70% training, 15% validation, 15% test
Stop criterion Early stop when minimum gradient magnitude
stabilizes or 25000 epochs
Learning rate 0.001

Table 9. LDA configuration.

Phase Description Value

Setup
Number of input features 5 to 10 randomness
Covariance matrix All classes have the same covariance matrix

Training
Cross-validation 10 k-fold

Table 10. DT configuration.

Phase Description Value

Setup
Number of input features 5 to 10 randomness
Maximum depth 2
DT algorithm standard CART
Optimization criterion Gini‘s diversity index

Training
Cross-validation 10 k-fold

Table 11. SVM-RBF configuration.

Phase Description Value

Setup
Number of input features 5 to 10 randomness
Kernel Radial basis function (RBF)
Multi-class design One against all (OVA)
Optimization Bayesian optimization

Training
Cross-validation 10 k-fold

As observed in configuration tables, a random number of input features, from five to ten, is a
common point applied to all algorithms. However, the randomness consists of picking up a feature
description vector from a shuffled list. On the other hand, the list was biased to assure that all features
were evenly distributed along all vectors.

Before proceeding to the following steps, it is necessary to evaluate if the Ensemble Triads classify
better when compared with the situations detailed in Table 12. They are combinations that represent
issues that need to be considered in order to determine if ET implementation is worth it.
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Table 12. Situations to evaluate.

Number Situation

1 Application of only one kind of algorithm.
2 Gathering all techniques in one ensemble and counting every inducer as one vote.
3 Only parametric sets application.
4 Only non-parametric sets application.
5 All triads heterogeneous sets application.

4.2. Results

All previous situations can always be analyzed with the same training folds and random
distribution seeds since all inducers’ results can be tracked separately. All of them happen at the
same time; therefore, it is just a matter of how to combine each one of the results. Consequently,
those combination results are shown in Figures A1 and A2 in Appendix A, and must be compared to
the results of the whole Ensemble Triads technique showed in Figure A3. The following confusion
matrices resume the scenario where Ensemble Triads were ranking better than the other situations
from Table 12.

The results were very stable after replicating all of them six times. However, each scenario
represented by feature spaces

−→
V 26

a ,
−→
V 14

b ,
−→
V 12

c had a different evaluation based on Table 12.

The outcomes, when applying feature space
−→
V 12

c , are shown from Figures A1–A3.
Situation 1 is more sensitive because all algorithms are in a weak and biased format;

therefore, it should not be seen as representative of their kinds. However, they represent very well the
versions of their Bootstrap Aggregation (Bagging) that consists of ensembles of them.

From the confusion matrices analysis, it is noticed that the accuracy of situation 1 has a high
variance among the four selected algorithms, and none of them could perform better than ET.
Moreover, it is possible to see that DT and LDA had the worst performances. All inducers are
independent in situations 2, 3 and 4, and the difference lies in the fact that situation 2 is a set of all
algorithms, while situation 3 is a set composed by ANN-LDA, and situation 4 is composed by DT-SVM.
For that reason, since it is a matter of majoritarian vote, situation 2 performed better than the others
just because it has twice the number of inducers.

Situation 5 combines all inducers from situation 2 into triads and holds a negligible higher accuracy
when they are both compared. However, it indicates that changing the way of combining inducers,
instead of leaving them for their own, can increase accuracy. Finally, ET could achieve the best result
among all others, mainly because of the same principle that makes situation 2 achieve better results
than situations 1, 3 and 4. That is, it aggregates situations 3 and 4, composing their respective triads.

4.2.1. Committee

The feature space
−→
V 26

a was used as input to the comparison between Tables 13 and 14, and it
summarizes the impact of applying score balance algorithm instead of majority voting as the
decision-making process used by the committee.

Table 13. Majority vote decision.

Situation True Positives F1 Score
A1 A2 A3 A4 A5 Total

2 55 55 56 50 44 260 90.98
3 55 52 60 48 42 257 89.75
4 54 54 53 47 37 245 85.68
5 54 55 57 47 43 256 89.47

ET 55 55 57 49 41 257 89.82
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Like many other machine learning techniques, each training pseudo-randomness process is ruled
by a seed that yields different combinations for better or worse results and even different ranking
positions for those situations. However, all evaluations were performed precisely with the same
conditions of seed, training set, training fold, and testing set, which assures a fair analysis.

From the FDI perspective, it was noticed that score balance decisions could easily manage the
trade-off between state detection given a specific situation or among the situations. There is a clear
understanding when analyzing situation 3 in both tables. Supposing that A4 is much more critical
to detect than the others, even a general increase of correct detection may not be desired if A4 has its
accurate detection decreased.

Table 14. Score balance decision.

Situation True Positives F1 Score
A1 A2 A3 A4 A5 Total

2 55 55 56 50 44 260 90.98
3 55 54 60 45 46 260 90.84
4 54 52 55 46 39 246 86.20
5 55 54 61 45 46 261 91.08

ET 55 55 60 47 46 263 91.90

After analyzing all results, the answer is that ET is worth because it is proved that in some
circumstances, its classification performed better than the others; however, none of the combinations
can always guarantee the best results, since it depends on the seed and feature space applied.

Nonetheless, all nine different situations are intrinsic to this technique, and the computational
effort necessary to ranking them is negligible if compared to the training one, which makes it possible
to declare that there is no reason to disregard any of them. Therefore, given some sorts of algorithms
divided into parametric and non-parametric sets, it can assure either the best solution overall among
the nine proposed combinations or a better weighted-class solution among situations 3, 4, 5, and ET.

4.2.2. Analytical-Model

The Analytical Model (AM) provides representative levels of the states presented in Table 5.
This makes it better to see the cause of abnormal situations A1, A2, A4, and A5, and at the same time,
it is possible to follow the degradation levels that occur within the tolerable limits of the system
represented by A3. Table 15 describes the parameters adjusted for AM where kd1 and Ld1 are the
parameters of the spring used to simulate degradation.

Table 15. Parameters and variables of the Analytical Model.

Parameter Value Description

g 9.806 Considered gravity acceleration in m/s2 .
k1 575 Spring 1 stiffness coefficient in N/m.
k2 575 Spring 2 stiffness coefficient in N/m.

kd1 405 Simulation spring 1 degradation stiffness coefficient in N/m.
d̂1 8 Spring 1 viscous estimated damping coefficient in N.s/m.
d̂2 8 Spring 2 viscous estimated damping coefficient in N.s/m.
m1 0.390 Body 1 mass in kg.
m2 0.400 Body 2 mass in kg.
m3 0.340 Body 3 mass in kg.
L1 0.097 Spring 1 length in m.
L2 0.097 Spring 2 length in m.

Ld1 0.11 Simulation spring 1 degradation length in m.

The experiment measurements are made in millimeters since the model is based on displacement
in this work, and for that, a total of 690 simulations were conducted in a workbench to provide the AM
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with the first scenario feature space, which has position measurements. The left column in Figure 6 are
signals from k1 parametrised spring while the right column is those with kd1 parametrised spring. It is
possible to notice that the degradation levels simulated by k1 are apparent in that figure and, indeed,
it does not happen all the time. Another case in Figure A4 presents two misclassified profiles.

It is necessary to analyze the AM from two perspectives. First, Figure A5 shows the confusion
matrix that summarizes state detection accuracy, and the second Figure A6 shows the confusion
matrix indicating spring degradation classification regardless of any of the states. This analysis
concludes that, alone, the applied AM can achieve accuracy of 96.10% on state detection and accuracy
of 93.7% on state isolation in a scenario where displacement measures are provided.

Figure 6. State signals profiles. Left column shows the spring stiffness coefficient without degradation
while the right column shows the simulated degradation of the stiffness coefficient.
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4.2.3. Second Instance-Combining Results

In the previous instance, the results from ET and AM are entirely independent, and now
they are gathered in the proposed ANFIS to achieve more accuracy when their results diverge.
The 690 simulations based on the first scenario were split into two sets, one with 483 (70%) for
training and the other with 207 (30%) for testing, which is from where the results in this subsection
came from.

It is remarkable in Figure A7 through both confusion matrices, how the misclassification errors
are complementary. The AM performed significantly better in general, even though its false negatives
are 10% higher to classify state A2 than the ET technique, which achieved 27.7% of false negatives to
classify state A4.

The ANFIS model managed the first results, increasing general accuracy prediction, as seen in
Figure A8. It is not possible to describe the process of decision making performed as much as it is
challenging to provide a complete set of rules that could explain all expected behavior. However, for the
given results, it is possible to state that the proposed ANFIS model has learned those rules adequately.

5. Discussion

As expected, the final instance result provided a better classification capability when compared
with the traditional Model-Based approach (Analytical Model) and Data-Driven approach using
Ensemble Triads Optimization. As can be observed in Figure A7, the Analytical Model approach was
able to perform a correct anomaly classification at 96.1% of the attempts, and the Ensemble Triads
Optimization approach was able to classify the anomaly correctly at 91.8% of the attempts. The final
instance result, performing the hybridization using ANFIS, achieved a correct classification score
of 97.6%, improving model-based or data-driven approaches isolated (see Figure A8).

It is essential to highlight the high dependency of the data-driven approach with the features
extraction step. In this work, even considering a model-based approach based on a single model and a
comprehensive set of features and using ensemble triads and committees, the model-based approach
performed better than the data-driven approach.

It is important to remember that all comparisons were made exactly under the same conditions
of seed, training set, training fold, and testing set. This assures a fair analysis of overall results for a
single Generic Anomaly Detection Hybridization Algorithm (GADHA) execution. Thus, any change
in one of those conditions produces different combinations of prediction algorithms.

All provided machine learning algorithms that need randomness seeds will demand an uncertain
number of executions and time to find an appropriate seed that yields better results. This is a common
behavior in any situation where this kind of algorithm is employed.

The computational cost depends on the number of selected basic algorithms and their respective
performance and abilities, like parallel processing, for example. In this way, this value is the sum of the
costs of each of the algorithms independently. However, if the total number of algorithms provided is
less than the total number of available processing cores, the processing cost will be equal to the cost of
the function with the worst performance.

As the system noise is not modeled, and unpredictable disturbances are usually found in
any complex system, data are necessary to differentiate normal behavior signature from abnormal
operational conditions or failures response.

The results achieved by the algorithm depend on a balanced number of training data and
the desired states to be detected. Like in many data-driven approaches, it is challenging to
estimate a minimum amount, but it is possible to find out such value during the experimentation.
Considering that there are no algorithms inherent problems, if the minimum desired accuracy for each
desired state was not achieved, more training data becomes necessary.

The practical implications of GADHA for scaled industrialization can reduce development time
and complexity for a large set of components and subsystems with further impact on development cost.
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States A1 and A2 are related to spring degradation, while A4 and A5 are related to operational
misuse of the system. Considering the RUL estimation, to better discriminate the states from an
abnormal operation of the system to a spring degradation can represent a significant advantage.

Figure 7 will give support to our considerations. The figure may be considered a model-based
degradation profile of a given landing-gear system. The Y-axis is the performance of the system and
provides the degradation status. The X-axis is the total accumulated stress. P1 and P2 are two different
points of degradation and F is the point when the system is in failure condition.

Figure 7. RUL prediction example.

The first detected abnormal condition was the point when an abnormal system state was classified.
Many things can be stated. If the point is P1, the predicted RUL is the prediction based on P1 through F
and can be expressed in cycles. The same can be declared about P2 and the expected RUL based on P2.

The classification problem can change the perception of the user in terms of the right
accumulated stress. If a wrong classification occurs, the predictive-maintenance team could wrongly
identify the point and schedule the maintenance in a non-optimal situation.

For example, if the system state is A1 or A2 but was classified as A3 or A4, the team could consider
the point P2 as the right one, reducing the expected life of the system. Landing heavier than normal or
having a hard landing produce a fast reduction on a landing-gear expected life-time. This situation
could generate a financial loss for the user.

If the opposite situation occurs, the hard landing happened but the system identified as a spring
stiffness problem, giving the possibility of predicting the system to be in the P1 point. In such a case,
late maintenance may occur, and a potential accident could happen if predictive-maintenance dictates
the maintenance schedule.

GADHA is designed to be as accurate as possible, bringing the possibility to reuse the framework
in many different systems, changing only the parts that are most tied to the target system. The results
found so far show that the approach is promising for use in PHM systems.

6. Conclusions

New aircraft generate a large amount of data that allow a series of analyses for both safety
and maintenance interests to “more accurately” estimate the condition of various subsystems.
In this context, the algorithms identified in this work seek to identify and isolate system states
(system degradation, faults, or operational deviation), which can be done through FDI techniques.
It does not matter whether the data affect maintenance or safety but whether the necessary parameters
are reached to guarantee the operation within tolerable limits of these subsystems.

Several other works addressed solutions for FDI, combining different machine learning
techniques or combining one of them with an analytical model, obtaining more accurate results.
However, in complex systems cases, the solutions are precise and are generally dedicated to a particular
subsystem that responds better to the studied technique. Even in works that require little adaptation,
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it becomes unfeasible to apply the chosen techniques for that solution, because it is very common for
hybrid approaches to be incredibly dependent on its model.

Many of these works then are not used by others due to high degree of forced coupling between
the different used algorithms. Despite the primary need to achieve the desired failure detection and
isolation rates, it is necessary, whenever possible, to maintain the least degree of coupling possible
between algorithms. The reason for this is because it becomes easy to replace the more specific
technique of one subsystem for another one without affecting possible dependencies on other parts of
the algorithm.

Under the same circumstances, the proposed method demonstrated its ability to combine different
techniques in order to achieve equal or better accuracy than its isolated application. It is a matter of
fact that since the algorithm can decide which combination or even just one of its techniques yields
better results. It is not about a new FDI Method, but a methodology to do hybridization of some
provided different techniques analyzed over their isolated and combined ensemble sets’ performance,
looking for improved general accuracy. Furthermore, it can combine model-based techniques gathering
their decisions on the second instance layer.
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Abbreviations

The following abbreviations are used in this manuscript:

ACC Accuracy
ADAM Adaptive Moment Estimation
ADRC Active Disturbance Rejection Control
AM Analytical Model
ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial Neural Networks
CBFI Consistency-Based Fault Isolation
CBM Condition-Based Maintenance
DT Decision-Tree
ESO Extended State Observer
ET Ensemble Triads
F1 F1-score
FDI Fault-Detection and Isolation
FIS Fuzzy Inference System
FN False-Negative
FP False-Positive
GADHA Generic Anomaly Detection Hybridization Algorithm
GD Gradient Descend
IMU Inertial Measurement Unit
IVHM Integrated Vehicle Health Management
JVM Java Virtual Machine
LDA Linear Discriminant Analysis
LNG Landing Gear
LPV Linear-Parameter-Varying
MIMOSA Machinery Information Management Open System Alliance
MF Membership Function
MS Minimum Square
NASA National Aeronautics and Space Administration
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NB Naive Bayes
NRMSE Normalized Root Mean Square Error
OOA-MCSVM One-Against-All Multi-Class Support Vector Machine
OSA-CBM Open System Architecture for Condition-Based Maintenance
OSA-EAI Open System Architecture for Enterprise Application Integration
PCS Precision
PDF Probability Density Function
PD Probability Distribution
PHM Prognostics and Health Management
PID Proportional Integral Derivative
RBF Radial Basis Function
RF Random Forest
RCL Recall
RUL Remaining Useful Life
SAE Society of Automotive Engineers
SVM Support Vector Machine
TN True-Negative
ToF Time-of-Flight
TP True-Positive

Appendix A

Figures from the Study Case.

Figure A1. Situations 1 ANN, DT, LDA, SVM.
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Figure A2. Subset triads results.

Figure A3. Confusion matrix Ensemble Triads.
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Figure A4. Misclassified profiles.

Figure A5. AM confusion matrix.

Figure A6. Degradation Isolation.
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Figure A7. First instance results.

Figure A8. Final instance result.
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