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Abstract 

Smart operations require the ability to generate alternative plans whenever a change in 

operations occurs in an unplanned manner. Alternate maintenance plans, in a highly 

dynamic context such as airline operations, require the ability to foresee small 

developments in terms of labor allocation, repairable items, and downtime, when and 

where they were not previously scheduled. In addition to being able to cause the 

disruption of the air transport network and consequent financial losses, it causes loss of 

trust in the company brand. Prescriptive maintenance is a potential technological response 

when using Artificial Intelligence to suggest alternative plans promptly so that decision-

makers can reduce the impact on air operations. This paper proposes a framework for the 

construction of an integrated prescriptive maintenance solution that is certifiable by using 

auditable methods and extensible to complex systems of other industries. The adoption 

of prescriptive maintenance not only enhances the use of health management systems, 

widely available in modern aircraft fleets that have the potential to predict the remaining 

useful life of items of interest, but also allows identifying more than one response 

alternative to conflicts of interest in the conduction of the smart operations of air transport 

companies. 
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1 Introduction 

The aircraft maintenance schedule is among the major 

decisions an airline has to make during its operation since it 

directly affects maintenance costs and aircraft 

availability.  The development of aircraft maintenance 

schedule is a complicated task involving the combination of 

a variety of parameters such as mechanic and engineering 

maintenance labor, consumable materials and equipment 

spare logistics, and, from the operator point of view, the 

demand for air transportation [1]. On the other hand, more 

than 80% of passengers are now traveling on tickets priced at 

less than base fare and this downward pressure on revenues 

is leading many carriers to focus their attention on controlling 

maintenance costs while ensuring safety and airworthiness, 

complying thus with regulators requirements. 

The predictive maintenance philosophy uses sensors and 

other monitoring strategies to gauge when complex systems 

actually will require maintenance. It is condition-based and 

relies on real-time health monitoring data available embedded 

in the system of interest. Data analytics procedures calculate 

the remaining useful life (RUL) of the equipment, allowing 

the operator to perform the maintenance before the faults 

happen, as the same philosophy of preventive maintenance, 

but not in a predetermined period (or cycles). The idea is to 

be able to establish the opportunistic moment to make the 

maintenance, postponing, or anticipating the moment, 

causing less downtime. 

The prescriptive maintenance philosophy is a step ahead 

providing real-time adaptive recommendations, using 

artificial intelligence, about the tasks that should be done and 

keep updating as the operation continues. In other words, the 

prescriptive maintenance not only is based on the failures’ 

prediction accordingly to the analysis of data patterns and 

trends, but also taking the specific company’s maintenance 

process into consideration to provide detailed 

recommendations, and supports the solution-finding process. 

This paper proposes a framework to tackle the scheduling 

maintenance problem adopting prescriptive maintenance 

strategy, which has to be certifiable, auditable, customized at 

the aircraft level [2], comprised of key indicators to measure 

its efficiency, capable of an adaptive context-awareness 

system and extensible to other industries. 

2 Literature review 

According to [3], key performance indicators are initially 

considered during the systematic inspection of failure 

patterns to understand their technical characteristics, 

criticality (downtime, costs, and occurrence) and their effects 
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on maintenance indicators. Besides the distinct task of timely 

executing a maintenance order, the measurement and control 

of the success of predictions and useful recommendations are 

not only used for the refinement of a machine learning 

method and a decision model, but also for the calculation of 

maintenance key performance indicators. By quantifying the 

defined key indicators, the current state maturity level is 

assessed, and weaknesses are identified. These results serve 

as a basis for the definition of company-specific target 

maturity state based on its strategic priorities.  

As stated in [4], a feedback mechanism has to be added so 

that the recommendations are continuously improved based 

on cost-related sensor-generated data during action 

implementation. In this way, the phases of diagnostics, 

prognostics, and recommendations can be further 

investigated and enriched with new and improved 

algorithms.  

Prescriptive maintenance is context-aware by nature. 

According to [5], in the prescriptive maintenance solutions 

proposed so far, the maintenance operators have to accept or 

reject the suggested tasks since their implicit experiential and 

“tribal” knowledge is necessary to a context-dependent 

maintenance decision, in a highly flexible operational 

environment. The information regarding the acceptance or 

rejection of the suggested tasks is then processed and 

analyzed as feedback information to improve the defined 

rules and measures continuously. In this sense, work is 

required to automatically adapt the proposed prescriptive 

maintenance set of rules to a dynamic operational 

environment, allowing the entire maintenance process to be 

less reliant on human knowledge and experience through 

machine learning approaches. 

The prescriptive maintenance looks to the maintenance 

process powered by the Internet of Things (IoT), and its value 

is on the non-routine maintenance tasks when talking about 

heavy maintenance and in the challenge coming from the fleet 

schedule evolution in terms of line maintenance tasks. In 

terms of maintenance planning, while the Condition Based 

Maintenance (CBM) approach looks to the “when” and 

“why” to maintain, the prescriptive maintenance looks to the 

“what” and “where”, defining the place and order of the 

maintenance tasks to accomplish and “who” should be 

engaged to execute each one [6].  To prescribe the way the 

tasks should be done is necessary to have inputs such as the 

MRO processes, available GSEs, spares, manpower and the 

condition of the system which is receiving the maintenance – 

resources availability status should be provided in real-time 

through the IoT. In this sense, the prescriptive maintenance is 

not a substitute or option to the Reliability-Centered 

Maintenance (RCM) paradigm, but the next step to its 

complete implementation on the field. 

As mentioned by [7], nowadays, preventive maintenance 

does not consider operational contexts, such as environmental 

parameters, and these strongly affect components’ lifetime. 

The ever-growing dynamism of the operational environment 

has also spurred the exploration of flexible on-line 

optimization approaches capable of reworking maintenance 

schedules incrementally (also known as rescheduling) to 

accommodate the contextual variability of the operation in 

different aspects.  

When turning the focus to prescriptive maintenance, the most 

challenging paradigm encountered in practice remains tightly 

coupled to the match between the formulated optimization 

problem and the decision-making process that such a problem 

aims to model. Industries are complex environments where 

humans and machinery coexist and interact, often without 

holistically centralized management. It is often the case that 

actions triggered by a predictive model do not conform to the 

practical criteria or constraints under which such actions 

would be manually enforced, like time and cost. The 

developed models would fail to apply when deployed.  

New working methodologies are needed to ensure that the 

hypothesis is aligned with the real operational requirements. 

Besides, such methods should also account for other practical 

aspects including the variability of metrics and constraints 

along time, cost implications of decisions made by the model, 

or the presence of conflicting objectives in the criteria guiding 

such choices.  

In addition to it, as mentioned by [8], although the 

prescriptive maintenance concepts deliver promising results, 

the generalizability of the approach has not been tested yet 

and, as future work, the concept shall be validated in different 

industries to test its generalizability.  

3 Prescriptive maintenance framework 

In this section, the authors propose the framework, from now 

on called Smart Prescriptive Maintenance Framework 

(SPMF) that can be used to build an effective prescriptive 

maintenance program for a fleet of commercial aircraft. The 

section starts with a description of the framework structure, 

then goes on with the description of the key enablers’ 

elements and technologies requirements, continues with the 

description of key indicators to measure the efficiency of the 

framework, and describes the requirements of the 

adaptiveness and generalizability. 

3.1 The SPMF framework 

The framework is built on three domains of interest: The 

system's reliability, availability, maintainability, and safety 

(RAMS) factors, the operating environment in which the 

system is operated, and the maintenance environment that 

will perform the maintenance tasks required to restore the 

system to the necessary operating conditions, within its 

intended reliability characteristics (see fig. 1). Time and cost 

are treated as constraints in all domains. 

Figure 1: Framework domains of interest. 
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Each domain has essential information that will feed the 

framework through the various phases of information fusion 

until a group of maintenance actions is defined. The SPMF 

fusion flow diagram describes how the framework works as 

well as the inputs needed and the outputs expected in each 

phase. 

As shown in fig. 2, the flow of information fusion is based on 

the capability to make the diagnosis, identifying the next 

operational demands to achieve the prognosis and based on 

the maintenance capabilities, the prescription of the set of 

maintenance tasks. 

From another perspective, the framework is constituted by 

five building blocks: inputs, fusion algorithm, output, the 

supported system, and the efficiency check process, as shown 

in fig. 3.  

Figure 2: Framework fusion methodology. 

Figure 3: Framework workflow. 
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3.2 Inputs 

The inputs building block comprises the information needed 

to feed the fusion algorithm. Table 1 describes a simplified 

list of information from the RAMS, Operations, and 

Maintenance domains. 

3.3 Fusion algorithm and its output 

The fusion algorithm proposed is an Artificial Intelligence 

(AI) problem-solving agent [9]. Once all the inputs are 

informed, the algorithm starts to search for the most probable 

effective action or sequence of actions to solve the 

maintenance problem. Once the actions are selected, the 

algorithm recommends the best scheduling according to the 

minimum fleet availability requirement and the constraint of 

the direct (DMC) and indirect maintenance cost (IMC), 

providing, thus, the output of the fusion step. 

3.4 Efficiency check 

After the implementation of the tasks over the system, the 

algorithm itself verifies, during the efficiency check, if the 

maintenance actions are practical, the fleet availability is 

according to customer’s requirement and maintenance costs 

minimized. If all these requirements are satisfied, then the 

selection of the same actions is reinforced, and the algorithm 

is considered mature. If at least one of the above conditions 

is not satisfied, then the probability attached to each task is 

redistributed, and a new set of actions is proposed in the next 

iteration.  

3.5 Key indicators 

As previously mentioned, the performance of the system is 

checked against two requirements: fleet availability and 

minimization of the system’s maintenance cost. Both 

parameters are also key indicators of the algorithm 

performance: is the fleet availability above the threshold 

aligned with the operator`s intent? Are the DMC and IMC 

contained in comparison to historical maintenance cost or 

operator estimates? 

3.6 Adaptiveness and context awareness 

Adaptiveness and context awareness are essential 

characteristics of the SPMF. These characteristics allow 

prescriptive maintenance generation specifically for each 

“tail number”. Some inputs, for example, the number of flight 

hours (FH) or flight cycles (FC), temperature || humidity, 

tribal knowledge, RUL and fault history, are a function of 

each operational environment, that is, one aircraft presents 

different values from another, and the same happens to 

maintenance teams and MROs. The prescriptive approach 

favors the utilization of the capability to identify the 

individual characteristics of each system, instead of using 

their average performance. 

Thus, this approach makes use of some enabling technologies 

present in the industry 4.0 such as networking, availability of 

extensive data collected by sensors and the use of efficient 

algorithms necessary to support real-time maintenance 

execution monitoring [10]. 

Table 1: Framework inputs 

Input Description 

Manufacturer Maintenance Plan Initial maintenance plan provided by the manufacturer at the aircraft entry into 

service. It is developed according to MSG-3 principles, and it is updated yearly 

depending on the commercial agreement between the airliner and the operator 

Flight Hour || Flight Cycle The number of flight hours (FH) or flight cycles (FC) represent the usage of the 

aircraft, system or specific equipment. These parameters are useful since, very 

often, the reliability of the equipment is a function of the system usage 

Temperature || Humidity Environmental parameters have to be considered since operational conditions 

influence the failure rate of the equipment in use 

Remaining Useful Life The remaining useful life (RUL) curve of each aircraft of the fleet should be 

predicted, based on the expected fleet flight schedule. Thus, some prognostics and 

health management (PHM) system has to be present in the aircraft to help plan the 

maintenance schedule. If not present, the fusion algorithm would rely on fault 

history, making forecastings 

“Tribal” Knowledge “Tribal” knowledge is any information gathered from experience and lessons 

learned by the team who is responsible for the maintenance execution. This subset 

of data is often unstructured 

Fault History Historical data of all the equipment faults 

Failure Mode and Criticality Analysis Failure mode and criticality analysis (FMECA) particularly helpful to support 

inductive AI approaches 

Mean Time Between Failures The mean time between failures (MTBF) represents the expected time between 

failures of a system, during normal operation 

Minimum Equipment List It details which equipment is allowed to be inoperative without grounding 

the aircraft 

Maintenance Cost The maintenance cost, which includes man-hour and material related to all aircraft 

maintenance activities 

Fleet Flight Schedule The schedule of all the company´s flights to be accomplished
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3.7 Extensibility to other industries 

Ideally, the SPMF algorithm can be used in those fields where 

a complex system is in play. The critical point, in this case, is 

the adoption of parameters that can describe the specific 

complex system accurately. The current development 

proposes to extend the SPMF to the medical field (Medical-

SPMF), being the human body the complex system to be 

“supported”. Table 2 suggests, for each input listed in the tab. 

1, the respective information applicable for the Medical-

SPMF. 

Table 2 – Medical SPMF inputs 

Aircraft complex system input Human body complex system input 

Manufacturer Maintenance Plan Formally recommended checks and their frequency 

Flight Hour || Flight Cycle Age 

Temperature || Humidity Body temperature 

Remaining Useful Life Prognostics 

“Tribal” Knowledge Informal lessons learned of the medical team 

Fault History Patient health history 

Failure Mode and Criticality Analysis Medical knowledge related to the specific organs failures being treated 

Mean Time Between Failures Not applicable 

Minimum Equipment List Medical statistics knowledge related to the organs failures being treated 

Direct Maintenance Cost Cost of treatment 

The prescriptive maintenance has been deployed in industrial 

plants [11] and elevators and escalators maintenance [12] 

with improved results, but still in its early stages of 

development. 

4 Conclusion and future work 

This work proposes the Smart Prescriptive Maintenance 

Framework (SPMF) as a structure to implement an AI, 

context-aware, adaptive algorithm to support a fleet of 

commercial jets. The framework includes efficiency checks 

against operator requirements such as the fleet availability 

and the direct maintenance cost, and depends on specific 

operational, engineering and economic data to be assertive 

such as: manufacturer maintenance plan, FH, FC, 

temperature, humidity, RUL, “tribal” knowledge, fault 

history, FMECA, MTBF, MEL and DMC, among others.  

The SPMF concepts apply to all industries where a complex 

system has to be supported, and in this paper is mentioned the 

extension to the medical field, as the human body the system 

to be supported. In this sense, it is recommended the adoption 

of suitable inputs and requirements for the treatment of a 

human body. 

Some essential questions and open technical challenges have 

been identified, related to the AI modeling and the right 

metaheuristics to be used. It also remains to be clarified if 

there are key performance indicators other than cost and fleet 

availability to drive the prescriptive maintenance and check 

its efficiency. Regarding the inputs data, it is also 

unquestionable that such information will have to be 

consolidated in an interoperable data standard to be 

determined. Referring to the medical field still has to be 

addressed the best inputs to be adopted.  

The next steps refer to the determination of the best 

metaheuristics to be used by the SPMF, identification of the 

most suitable KPI’s and test of the algorithm framework in a 

real fleet. Successively, once the algorithm is mature and the 

right inputs are identified, tests will be conducted in the 

medical field to verify the extensibility of the SPMF 

concepts. 
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