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ABSTRACT
Maintaining high-complexity aircraft requires resilient and data-driven maintenance
planning. This article presents the Efficient Task Allocation and Packing
Problem Solver (ETTAPS), a novel framework that integrates predictive analytics
and optimisation models to generate adaptive maintenance schedules. ETTAPS
employs a trial-and-error approach to optimise maintenance intervals, leveraging a
branch-and-cut solver combined with First-Fit Decreasing (FFD) task grouping to
minimise costs and enhance aircraft availability. Additionally, a Random Forest model,
retrained using a rolling 24-month data window, continuously refines predictions,
leading to progressive cost reductions and improved system reliability over multiple
maintenance cycles. Our results demonstrate that ETTAPS significantly reduces
maintenance costs and increases aircraft availability by efficiently grouping tasks and
incorporating real-world constraints, such as mechanic skill levels, task dependencies,
and resource limitations. The framework addresses key gaps in MSG-3 and
certification analysis, improving task scheduling efficiency and ensuring long-term
operational resilience. Furthermore, ETTAPS lays the groundwork for integration
with digital twins, real-time anomaly detection, and flight planning systems,
supporting a more intelligent and proactive approach to aircraft maintenance.This
research advances resilience and sustainable aviation maintenance planning by
optimising costs, reducing downtime, and proactively adapting to operational
demands. By aligning with Industry 4.0 and aviation sustainability goals for 2050,
ETTAPS contributes to the next generation of intelligent maintenance systems.
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NOMENCLATURE
Aj Set of preparations necessary to accomplish task tj

Bi Set of unique preparations for package si

bb Bin b within a work package
C Set of aircraft components
ct Aircraft component t
CMCF Cost factor for corrective maintenance
CMTF Corrective maintenance time factor
Dij Set of preparations for task tj in package si

dti Overall work package maintenance downtime
dtk Estimated preparation pk downtime
HOC Hourly opportunity cost
limj Flight time limit for task tj

lastt Last component stoppage time
M Set of aviation mechanics qualifications
matj Material cost for task tj

mhr
j Man-hours for qualification r in task tj

mhk Estimated preparation pk man-hours
nmecr

j Number of mechanics of qualification r needed for task tj

O Set of out-of-phase stoppages
op Out-of-phase stoppage p
OPfactor Out-of-phase factor
P Set of maintenance preparations sub-tasks
pk Maintenance preparation sub-task k
prepcq Cost of preparation q
pmcj PM cost of task tj

pmci
j Preventive maintenance cost for task tj in package si

pmcp
j Preventive maintenance cost for task tj in an out-of-phase stoppage op

pmdtj PM downtime of task tj

pmocj PM opportunity cost associated to pmdtj

prep_costs Total preparation costs
qualifr Mechanic qualification r
Ri

t Reliability of component ct at stoppage si

S Set of maintenance stoppages
si Maintenance stoppage i
stopi Aircraft maintenance stoppage interval for package si

T Set of maintenance tasks
tj Maintenance task j
task_costs Total task costs
unusedOj

p Flight hour unused for an out-of-phase stoppage
unusedP j

i Flight hour unused for a regular maintenance package
wager Wage for qualification r (in US$/h)
Xij Binary variable: 1 if task tj is assigned to package si, 0 otherwise
znumxr

j Number of mechanics of qualification r needed for task tj in zone x
Z Set of aircraft zones
zx Aircraft zone x
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1.0 Introduction
The aviation industry has made significant strides recently and continues to work
toward a sustainable future. In terms of product, the incorporation of industry 4.0
concepts, use of improved materials such as carbon fibre composites, titanium alloys,
and 3D-printed structures, adoption of advanced propulsion systems such as more
efficient turbofans and hybrid and electrical engines, along with advancements in
aerodynamics that reduce drag and improve fuel efficiency, have led to the development
of more efficient and sustainable aircraft designs [Song and Liu (41), Yusaf et al. (47)].

Challenges in Preventive Maintenance

The main problem dealt with in this work is that, in the initial steps of the life cycle,
PM tends to be conservative due to the limitations faced by maintenance engineers.
These limitations are mainly related to the lack of models and simulations specially
developed for the development of dependability, applied to the design of aircraft since
their conception. The consequences are consistent with what Russel (37) presents
regarding the performance of aircraft fleets such as the MD F-4 Phantom 2, which
were only operated in a mature manner, from the perspective of their supportability,
almost at the end of their life cycle.

Limitations in Analytics and Tools

Other limitations are the lack of maturity in predictive and prescriptive analytics,
and the absence of efficient tools to monitor changes and forecast dependability data
(like reliability, availability, maintainability, cost, and safety) during the development
and operating phases. This may result in inefficient maintenance plans, i.e., more
costly than they could be, and lower than possible operational availability. This
increases interest in dynamic maintenance programs, like described by Salonen and
Gopalakrishnan (38).

Limitations in existing analytics and tools significantly hinder the development of
optimal maintenance strategies. In particular, predictive and prescriptive analytics
are not yet developed enough to accurately predict when parts will fail and suggest
maintenance actions that are both cost-effective [e.g., Lei et al. (28); Goyal and
Purohit (19)]. This immaturity often leads to inaccurate predictions, resulting in
unnecessary maintenance or, conversely, unexpected failures and costly downtime,
as illustrated by case studies in industries such as aviation and manufacturing.

Additionally, our current tools often lack the necessary features to monitor changes
in crucial dependability data, such as real-time sensor data and degradation trends.
This has been shown in studies that look at the flaws in condition-monitoring systems
and Internet of Things (IoT) frameworks [e.g., Tsang et al. (43)]. This makes it
challenging to dynamically adjust maintenance plans in response to changing operating
conditions, leading to potentially suboptimal schedules and reduced operational
availability.

Some new studies, like those using machine learning for maintenance [Li et al. (30);
Wen et al. (45)] and digital twin technology for real-time simulation and monitoring
[Tao et al. (42)], show promise for ways to get around these problems. However, further
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development and testing are necessary.

During our broad research of Maintenance Repair & Overhaul (MRO) tools, we
found significant drawbacks when adding machine learning. AMOS uses external
Machine Learning (ML) technologies with poor internal integration, creating data
silos and reducing real-time adaptability. Traxx has powerful ML capabilities
but is expensive and demanding with a sophisticated cloud implementation. For
sophisticated applications, OASES has limited ML support, static maintenance
planning, and scalability. ML use is difficult for smaller operators due to data
quality and vendor lock-in, and TRAX may be expensive. OASES and others serve
smaller operators without ML, exposing resilient maintenance planning scalability and
adaptation issues. Up to this moment, an exploratory analysis identified no resilient
maintenance plan employing these technologies.
Defining the Task Allocation and Packing Problem (TAPP)

To solve this problem, it is necessary to efficiently allocate tasks to maintenance
packages (scheduled stoppages), and then schedule the tasks in each package to
minimize the maintenance duration. We named this problem as Task Allocation and
Packing Problem (TAPP).

Some recent studies investigated the issue of PM scheduling for a high-complexity
mechanical device with different failure modes [Duan et al. (9)]. Another presented an
optimization for a disassembly sequence planning approach applied to PM [Kheder
et al. (27)]. Gonçalves et al. (18) discussed how to set up an initial maintenance
program for unmanned aerial vehicles (UAVs) following the Maintenance Steering
Group (MSG-3) approach. Gill and Szrama (16) presented a method for adopting
and developing an effective aircraft maintenance program using proper tools for risk
analysis, optimal interval assignments, and effective maintenance task selection.
Maintenance Planning in the Aeronautical Context

In the aeronautical context, two different processes are used in the initial maintenance
requirements of an aircraft: type certification (TC) process for aircraft maintenance,
and Maintenance Review Board (MRB) [FAA (13)]. Through the MRB process,
manufacturers, regulatory authorities, vendors, operators, and industry together
develop the initial scheduled maintenance and inspection requirements for new aircraft
[Ahmadi et al. (2)].

Nevertheless, several crucial elements, including the expenses associated with
implementing corrective measures based on the likelihood of item failures, the costs
incurred from production disruptions, the benefits derived from the subsequent
maintenance package, and the utilization of predictive analytics methodologies, are
frequently overlooked. Thus, investigating the possibility of including issues related
to costs and savings in the aircraft development stages is an important problem for
researchers.
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Emerging Technologies in Maintenance

Further, the introduction of state-of-the-art technologies has made it possible to
move from maintenance planning based on experiences and assumptions to smart
sensors, ML, and big data analytics support. These new technological possibilities
enable predicting events that were previously difficult to predict [Salonen and
Gopalakrishnan (38)].

Gunda et al. (20) used ML to identify and categorize records into common failure
modes, which identified distinct variations in failure frequencies over time and across
equipment types. These findings helped inform a number of ongoing activities focused
on further, including equipment reliability simulation analyses, spare parts inventory
management, and cost model estimates for operations and maintenance.

Cardoso and Ferreira (6) stated that it is extremely common in maintenance
applications to start from data of different types and from various sources, which
led them to treat data with predictive analytics tools in the analysis of maintenance
data. One of the main objectives of the ML models used was to predict the probability
of failure occurring within a certain time window.

Problem Definition

Airlines face increasing pressure to optimize aircraft maintenance planning to reduce
costs, minimize downtime, and enhance operational availability. Traditional
maintenance strategies often rely on static scheduling or reactive approaches, leading
to inefficiencies in resource allocation and increased operational disruptions.

By leveraging predictive analytics and optimization methods, airlines can
shift toward data-driven maintenance planning that dynamically adapts to
evolving operational conditions. However, a key challenge lies in efficiently
integrating predictive insights into actionable maintenance schedules,
ensuring that maintenance tasks are optimally grouped and resources are
effectively utilized.

This study seeks to address the question: How can predictive analytics and
optimization methods be combined to improve aircraft maintenance planning, ensuring
cost-effectiveness and operational resilience while maintaining regulatory compliance?

Proposed Solution for TAPP

To solve the TAPP, this paper proposes a data learning model, working in a closed-loop
with an optimization model, to generate a resilient maintenance plan. The aim is to
support the development of an initial maintenance plan assuring adequate maturity
at entry to service, and proactively update it throughout their life-cycle.

Figure 1 presents a general idea of the proposed solution, which will be detailed in
Section 3.



6 The Aeronautical Journal

History records Learning mechanism IP solver

Maintenance plan

Operations and maintenance schedule

Current records

Figure 1: Data-learning-guided Maintenance Planner

Article organization
The remainder of this article is structured as follows: Section 2 reviews relevant
literature on aircraft maintenance planning and optimization. Section 3 introduces
the Efficient Task Allocation and Packing Problem Solver (ETTAPS) framework.
Section 4 details the methodology and modeling techniques. Section 5 presents
the results and discusses the findings. Finally, Section 6 concludes the paper and
suggests future research directions.

2.0 Literature Review
This section presents a review of the literature concerning the maintenance plan
development, the maintenance data required, and discusses the use of predictive
analytics to improve the efficiency of a new product’s maintenance.

The study by Plastropoulos et al. (35) explores the transition to smart hangars,
emphasizing the integration of Industry 4.0 technologies like AI, robotics, and digital
twins to enhance maintenance efficiency and sustainability. These advancements
align with the principles of predictive and prescriptive maintenance discussed in
the literature, addressing challenges such as analytics maturity and legacy system
integration. Proposed solutions, including human-machine collaboration and energy
efficiency, complement strategies like dynamic maintenance programs and the Task
Allocation and Packing Problem (TAPP). Together, these efforts highlight the
potential of smart hangars to reduce downtime, optimize costs, and support aviation’s
sustainability goals by 2050.

2.1 Development of the aircraft maintenance requirements
This study focuses on the development of initial maintenance plans for
transport-category aircraft complying with 14 CFR Part 25 and operating under
14 CFR Part 121 regulations. The manufacturer’s Instructions for Continued
Airworthiness (ICAs), required by the CFR 25.1529 and CFR 25.1729, typically form
the basis of an approved air operator’s maintenance plan.

For transport category aircraft, maintenance tasks and intervals are specified in
either the Maintenance Task Board (MTB) or in the Maintenance Review Board
(MRB) report, depending on the aircraft’s capacity [FAA (11)].

Additional maintenance information required for developing the operator’s
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maintenance plan is provided in the type certificate holder’s Maintenance Planning
Document (MPD) or relevant chapters of the maintenance manual.

For non-transport category aircraft, maintenance requirements can be developed in
accordance with FAA Order 8110.54 or, alternatively, through the MRB/MTB process
[FAA (12)].

The initial maintenance requirements for a new commercial aircraft are derived from
the Type Certification (TC) and the MRB processes. Modifications to an aircraft’s
design, performance, or systems that are not covered by the original TC require a
Supplemental Type Certificate (STC), as defined in 14 CFR Part 21. STCs introduce
changes that can significantly impact continuing airworthiness.

The STC approval process, similar to the TC process, necessitates a thorough
evaluation and may require revisions to the ICAs. This includes updates to the
MSG-3 data and maintenance requirements, potentially leading to the creation of
new maintenance tasks, revisions to existing tasks, or even the deletion of obsolete
tasks.

2.2 Emerging technologies
Digital technology and the use of e-maintenance features permit real-time data
analysis and the ability to monitor and predict the health of systems. This improves
condition-based maintenance effectiveness and allows for the implementation of
predictive and prescriptive maintenance strategies.

Proper maintenance strategies can ensure the cost-effective and safe use of
high-complexity systems [Mlynarski et al. (32)]. In this sense, high-complexity systems
need to perform planned PM to reduce the probability of sudden failures, restore
functionalities, and extend their useful life as much as possible.

The aviation industry has made significant strides recently, not only in developing
sustainable aircraft designs but also in enhancing operational efficiency through
proactive maintenance strategies. In alignment with Industry 4.0 concepts,
advancements in maintenance planning now integrate predictive analytics and
optimization frameworks to reduce downtime and improve aircraft availability. These
strategies complement improvements in aircraft design, such as the use of carbon fiber
composites, titanium alloys, and 3D-printed structures, by ensuring that maintenance
processes are as innovative and efficient as the aircraft themselves. Additionally, the
adoption of advanced technologies like prognostic health monitoring and digital twins
has enabled the aviation sector to anticipate and address maintenance needs, creating
resilient and adaptive maintenance plans that align with sustainability and operational
goals [Song and Liu (41), Yusaf et al. (47)].

Kabashkin (26) presents a study with a comprehensive framework for integrating
digital twins into aircraft lifecycle management. The framework leverages IoT
sensors, big data analytics, machine learning, 6G communication, and cloud
computing to create a robust ecosystem. A key achievement is the integration of
physics-based, data-driven, and hybrid models to enhance predictive maintenance and
decision-making. However, limitations include challenges in real-time data integration,
ensuring model accuracy, and data security concerns due to multi-stakeholder
involvement.

Giacotto et al. (15) present a framework for prescriptive maintenance that deals with
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issues that come up in Industry 4.0 settings, such as combining different types of data
sources and creating accurate models that can predict when equipment will break
down or become less useful. The authors highlight the importance of considering
maintenance actions based on predicted outcomes and costs, as well as the need for
scalable frameworks. The study focuses on developing a holistic and scalable smart
prescriptive optimisation framework that provides an optimal course of action and
can be extended across industries and assets with different technological maturities.
The results show that the framework works to make maintenance more efficient and
effective. This impacts numerous industries and paves the way for proactive and
effective maintenance practices in digitalisation and prescriptive analytics.

2.3 Maintenance plan development and data
In the aeronautical industry, the operators are required to have a continuing analysis
and surveillance system to ensure the effectiveness of the maintenance and inspection
program [FAA (10)]. This enforces that the optimal maintenance strategy for a
component or a multi-component system can significantly influence, minimising
costs and downtime [Rebaiaia and Ait-kadi (36)]. In the case of a new engineered
system, data from an existing, similar system can be reasonably used [O’Connor and
Kleyner (33)].

To check how reliable a system is at first, you can also use military or commercial
standard guidelines, like MIL-HDBK-217F, NPRD (Non-electronic Parts Reliability
Data), and FMD (Failure Mode/Mechanism Distributions). The concepts and
guidelines for dependability testing throughout system development can be found in
MIL-HDBK-189C.

[Usuga-Cadavid et al. (44)] stated that the dynamic nature of data during the
development and operational phases presents both opportunities and challenges for
maintenance planning. While data mining and ML tools can extract valuable insights
from this evolving data to improve maintenance decisions, the complexity of these
systems can hinder understanding and interpretation. Specifically, the interaction
between human operators and the predictions generated by ML models can be difficult
to grasp, potentially limiting the adoption and effectiveness of these tools.

2.4 Maintenance program evolution
We assume that the objective of maintenance program evolution is to keep the
maintenance plan updated to maintain its effectiveness. In the operational phase, we
establish a program to control in-service dependability. The program encompasses
a collection of regulations and methodologies aimed at observing and assessing
performance, as well as issuing notifications if any corrective measures are deemed
necessary. Furthermore, it offers the necessary data to support the modification of the
maintenance plan.

Although it can occur at any phase of the product’s life cycle, the optimisation
analysis is more effective if carried out as early as possible. According to Blanchard
and Blyler (4), without a focus on the dependability aspects from the start of the
system design, several logistical support problems are prone to occur, impacting the
system performance and costs.
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During the operational phase, a program for controlling in-service dependability is
established, as required by CFR 14 Part 121.373.

The Continuing Analysis and Surveillance System program is a set of rules and
methods for keeping an eye on and judging performance, as well as sending out alerts
if any corrective actions are thought to be needed. Furthermore, it offers the necessary
data to support the modification of the maintenance plan.

In addition to alterations derived from its continuing performance and effectiveness
analysis, the maintenance plan may be modified in response to major repairs,
Airworthiness Directives, or Service Bulletins.

Furthermore, after a certain period of operation, the Type Certificate Holder and
operators can propose to the authorities a program to implement a complete evolution
of the MRB report. The guidelines for running this evolution process are described in
the International MRB/MTB Process Standard (23).

A framework for a resilient maintenance plan is expected to collect, analyse, and
evaluate data using ML tools to proactively spot areas where the current maintenance
strategy can be improved.

2.5 Maintenance optimization approaches
de Jonge and Scarf (25)’s review offers a comprehensive overview of maintenance
optimization models, categorizing them by system characteristics and optimization
criteria. The paper highlights the increasing importance of data-driven approaches
and identifies key research gaps. While focusing primarily on theoretical models,
it provides a valuable resource for researchers and practitioners, facilitating
model selection and guiding future research in this dynamic field. The review’s
structured approach and insightful discussion of trends contribute significantly to the
understanding of maintenance optimization.

2.6 Predictive Maintenance with Machine Learning
This subsection describes a system for predictive maintenance using ML. The system
leverages historical data on maintenance and equipment failures to proactively plan
future maintenance tasks.

Hu et al. (22)’s review provides a comprehensive overview of Prognostics and Health
Management (PHM), focusing on the interconnectedness of design, development, and
decision-making. The paper covers data acquisition, feature extraction, prognostic
model development, and decision strategies, highlighting the role of enabling
technologies. While comprehensive, a deeper dive into the specific challenges of
individual techniques could be beneficial. Overall, the review offers valuable insights
for researchers and practitioners, providing a framework for understanding and
implementing effective PHM systems.

As stated before, the work of Kabashkin (26) proposes a comprehensive digital
twin framework for aircraft lifecycle management, using IoT, big data, machine
learning, 6G, and cloud computing to enhance predictive maintenance via integrated
models. Challenges include real-time data integration, model accuracy, and data
security, which federated learning and blockchain aim to address, supporting predictive
maintenance’s digital transformation.
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Cao et al. (5) propose a data fusion method for failure rate analysis and maintenance
plan optimization for civil aircraft parts. The approach integrates data from multiple
sources, including maintenance records, sensor data, and expert knowledge, to improve
the accuracy of failure rate predictions. While the concept of data fusion is promising,
the paper could benefit from more detailed explanations of the specific techniques
used and a more thorough evaluation with real-world data. The focus on failure rate
prediction, while important, leaves open the question of how these predictions are
incorporated into a full maintenance optimization framework.

Key points of ML to predictive maintenance:
. The ML model continuously analyses maintenance records and predicts potential

equipment degradation based on predefined thresholds.
. With dynamic maintenance plans, the model generates maintenance plans that

adapt to changes in equipment performance, aiming to:
- Ensure equipment is available for use when needed; and
- Avoid unnecessary maintenance while preventing failures.

Data handling:
. In the early phases, use historical data from similar systems to generate initial

maintenance plans.
. As actual data is collected, the model’s accuracy improves, leading to more efficient

maintenance plans.

Benefits of ML tools in predictive maintenance:
. Proactive maintenance helps prevent unexpected equipment failures.
. Optimized maintenance plans avoid unnecessary repairs.
. Equipment is more frequently available for use when needed.

Overall, this system uses machine learning to analyse historical and real-time data,
enabling the creation of dynamic and data-driven maintenance plans that optimize
both equipment performance and cost efficiency.

2.7 An aircraft fleet as a resilient system
The resilience of a high-complexity system can be understood as its ability to fulfil its
mission through attributes that protect its functionalities and parts while also allowing
for precision in information, situational awareness, and the ability to diagnose and
recover from any one of these features.

It is necessary to contextualize the environment where aircraft fleet operate and
the meaning of resilience for a more profound understanding of the objectives of this
work. Every high-complexity aerospace system is a system that operates to meet
service-level requirements (for the market, in the case of the private sector fleet, and
for readiness, in the case of defence systems, [Goerger et al. (17)].

Figure 2 shows the behaviour of support performance for an aircraft fleet. It
considers the entire life cycle from the conceptual phase through Conception, Research
& Development, Production, Operation & Support, and Disposal.
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From the beginning of the conceptual phase to the delivery of the first aircraft, there
is an expected growth in service level and dependability requirements (Curve 1). A
late entry of supportability requirements can lead to the case of Curve 2.

Curve 1
Saw teeth 1

Curve 2
Saw teeth 2

Service level

Conception

R & D Production Deployment Operation & Support

Life cycle
Figure 2: Observed support performance behaviour.

By observing what happens after the delivery of the first aircraft, the service
levels may present degradation that, if not treated properly and in a timely manner,
would imply benefit/cost degradation for the fleet. The performance demonstrated
in Saw teeth 1 considers system that automatically realigns and corrects the entire
maintenance and support program to prevent such eventual degradation.

A system that adheres to Curve 1 and its continuity throughout the operation and
support phase (Saw teeth 1) represents a support system that learns and is resilient
throughout the entire fleet life-cycle.

A system that behaves like Curve 2 represents a support and maintenance system
that took too long to be developed. It is expected to have a great delay in its maturity
target (if it gets there). The performance of this product until its maintenance must
therefore imply a series of wastes and extra costs (Saw teeth 2) that the present paper
aims to avoid.

We hypothesize that, with the use of the framework proposed, we expect that the
system will learn to improve the maintenance plan by intelligently exploring historical
data acquired during product development and operation.

3.0 Description of proposed method
We consider a continuous optimization of maintenance planning by integrating
predictive analytics (Learning mechanism ) into the solution process to common issues
the industry faces in developing the initial (Conception and Development phases of
the life-cycle) maintenance program.

The certification and maintenance review board process tells the optimization
module what tasks need to be done and how often they need to be done. It then
uses the available maintenance data (history and current records) to figure out how
to assign tasks to the predefined maintenance packages.

Our proposed integer programming (IP) solver looks at each grouping of tasks into
maintenance packages based on how much they are expected to cost, whether they
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need to be fixed before or during the preventive task, and the money that will be lost
or not gained when the system is down.

Among the maintenance tasks are the preparation tasks, which are maintenance
actions that are performed before and after the main tasks (access openings, energy
supply, compressed air supply, air conditioning, etc.). The proposed method also
considers the economy generated by allocating common preparation tasks once,
minimizing the repetition of these common tasks, which would represent extra resource
consumption.

Field data from the operations and maintenance schedule is collected and monitored
to be used to feed back into the resilient planner’s database, enabling the continued
learning process (the ML pipeline). Figure 1 presents a high-level schematic of the
proposed task allocation procedure.

Predictive Maintenance for Aeronautical Engines with Machine Learning

We accomplished a case study that applies machine learning to aircraft engine sensor
data to predict failures. Using historical maintenance logs and sensor readings, we
trained models to identify failure patterns and optimize predictive maintenance.

Below is a description of the three common types of machine learning strategies
employed.

• To predict a continuous value we used Random-Forest Regression:
Time-to-Failure (TTF), for each cycle/engine, is the number cycles between that
cycle and last cycle of the engine in the training data.

• To categorize data into one of two distinct cycle bands, we used Binary
Classification: if the remaining cycles (TTF) is less than a specific number
of cycles (e.g.. 30) then the engine will fail in this period. Otherwise the engine
is fine.

• Multi-class Classification was used to categorize failure risk into predefined
cycle bands (e.g., 0-15, 16-30, 30+ cycles before failure). These bands allow
maintenance teams to prioritize inspections and schedule preventive maintenance
before failure occurs.

The insights gained from this case study provide a foundation for applying
predictive maintenance models to other aircraft components. Future research will
explore integrating these models with the ETTAPS framework to optimise fleet-wide
maintenance schedules.

4.0 Methodology and Modelling
The IP solver used in this work was the Computer Infrastructure for Operations
Research (CoIn-OR) Branch and Cut (CBC) developed and maintained by Forrest
et al. (14), as well as Python 3, with the following libraries: NumPy (Harris et al. (21)

); pandas (McKinney et al. (31)); and scikit-learn (Pedregosa et al. (34)).
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4.1 Maintenance Plan Development Process
Figure 3 presents the flow of information to generate the initial maintenance
requirements and appropriately allocate them in the operator’s maintenance plan.

MSG-3 Data Certification
Data

Maintenance
Requirements

Dependability
Data

Maintenance
& Operation

Profile

Maintenance
Plan

Field Data

Results

Task Compiling
Task Allocation

& Packing

MaintainingAnalysing

A B
depends on

Figure 3: Process of Maintenance Plan Development using ETTAPS.

The Object Process Methodology (OPM) guided the design of Figure 3. OPM
is a conceptual modeling language and methodology for capturing knowledge and
designing systems, specified as ISO/PAS 19450. OPM was conceived and developed
by Dori (8) and is chosen for its ability to concisely represent both the structural
(objects) and behavioral (processes) aspects of this complex system.

MSG-3 Data, which gives maintenance guidelines from the Maintenance Steering
Group 3 process, is an object in the maintenance plan development process that
stands for important information or physical things. Certification Data, encompassing
data from aircraft type certification, including safety requirements; Dependability
Data, representing Reliability, Availability, Maintainability, and Safety (RAMS) data;
Maintenance & Operation Profile, detailing the operational context and maintenance
history of the aircraft or fleet; Maintenance Requirements, specifying the necessary
maintenance tasks and procedures; The Results section contains the outcomes from
the Analysing process, such as predictive or prescriptive models.

Maintenance Plan, outlining the scheduled maintenance activities, task allocation,
and resource allocation; and Field Data, which is collected during the execution of
the maintenance activities.The representation of links between objects and processes
takes the following form: There are solid arrows that show how objects are used or fed
into processes. For example, the MSG-3 Data and Certification Data instrument is
used for task compilation, dependability data, the maintenance and operation profile,
maintenance requirements, and results.

The maintenance plan instruments are used for task allocation and packing. The
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field data instruments are used for analysis. Control links (dashed arrows) show how
objects influence or constrain processes; for example, Dependability Data controls Task
Allocation & Packing. Procedural links A depends on B indicate process dependencies;
for example, Analyzing depends on Field Data.

Some important things to notice about the diagram are the feedback loop: field
data informs analysis, and results inform task assignment and packing. This shows
that maintenance planning is an iterative process. Multiple objects influence the
central task allocation and packing process, which in turn produces the maintenance
plan. The diagram emphasizes a data-driven approach, highlighting the importance
of data from various sources (MSG-3, Certification, Dependability, Field). Finally,
it illustrates a systematic process, moving from high-level guidelines to specific tasks
and schedules.

4.2 Predicting Maintenance Needs with Machine Learning
This system uses historical data to predict future maintenance needs for equipment.
Here’s how it works:
. Learning from the past: We analyse past maintenance data using a technique

called supervised learning. This helps us identify a mathematical relationship (the
mapping function) between changes in various factors and future maintenance
outcomes.

. Identifying important factors: Not all information in the data is equally
important for predicting future needs. We carefully select the most relevant factors
(features), such as maintenance date, labour hours, and material costs, to improve
the accuracy of our predictions.

. Choosing the best fit: We use a specific technique called Random Forest
regression to explore different types of relationships between the chosen features
and the desired outcome. This helps us find the best mathematical formula (the
mapping function) to represent that relationship.

. Making predictions: Once we have a reliable mapping function, we use it
to predict future outcomes based on new maintenance data. This allows us to
estimate various aspects like:

- Preventive maintenance needs: When might equipment need routine
maintenance to avoid failure?

- Failure rates and probabilities: How likely is the equipment to fail in the
future?

- Operational availability: How much uptime can we expect from the
equipment?

. Feeding the results: The predictions generated by the mapping function are
provided to the IP solver. This solver uses these predictions to optimize future
maintenance plans.

ETTAPS employs a two-stage approach. A Random Forest model (100 trees, max
depth 10) predicts component failure probabilities, time-to-failure, remaining useful
life, and maintenance costs. The probabilities are then used to create a mixed-integer
program (using the Branch & Cut algorithm) that finds the best way to assign
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and schedule tasks while keeping operational constraints (like task dependencies and
resource limits) in mind. Predicted failure probabilities weigh the cost of delaying
tasks within the objective function of the optimization model.

We did not use deep learning (like convolutional neural networks for sensor analysis
and recurrent neural networks for time series prediction) yet in this work, nor
reinforcement learning (like dynamic scheduling). We are aware that new research
on aviation maintenance is exploring these techniques.

ETTAPS uses Random Forest for prediction and mixed-integer programming for
optimization. Unlike deep learning, ETTAPS effectively handles limited datasets.
Unlike reinforcement learning, which often relies on simulations, ETTAPS leverages
real-world maintenance data directly.

4.3 Historical records
This work uses a case of an aircraft under development to test the solution proposed.
This approach was chosen because of its complexity, which will permit a broad
diversity of intricacies that characterize aircraft development.

We chose important components used in aircraft under development that are
commercially off-the-shelf components used in many other aircraft on the market.
It is also significant that part of the maintenance history records is available: ejection
pump; engine; fuel pump; hydraulic pump; starter generator and main battery.
Another 80 aircraft repairable components, with some known attribute values, were
added to the tests.

The general approach to the estimated parameter values for these 80 items’
attributes was based on making a random choice in the range [xmin, xmax] according
to the engineers’ experience, where x is the parameter average considered.

As to the failure rates, we adopted what was proposed by Smith and Hinchcliffe (40)),
that defines the observed ranges for a wide number of industry components.

The historical records generated for this work comprised: maintenance date; PM
costs; man-hours spent; material consumed; operating hours; and failure probability.

Each time the operations and maintenance schedule block in Figure 1 sends a record,
the learning mechanism is run to generate new slopes and bias. If a certain threshold
is surpassed, the IP solver is triggered, and a new optimized maintenance plan is
generated.

4.4 The TAPP Solver
This section presents the mathematical model for the Efficient Task Allocating and
Packing Problem Solver (ETTAPS) presented in the doctoral thesis of the prime
author.

This section provides the rules for any solution method to be adopted, a
mathematical description of a system for maintenance planning that accounts for
flight and labour times, resource availabilities, and due times.

As all variables are expected to be integer and the constraints and objective function
are linear, we model TAPP as an Integer Linear Programming formulation.

Let C = {c1, c2, c3, ..., c|C|} be a set of aircraft components, being |C| the size of set
C, with the following attributes each:
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. namet: a defining name for component ct

. ηt: the Weibull characteristic life, the time at which 63.2% of the units are likely
to fail. More details are available on www.weibull.com

. βt: the Weibull shape parameter, which denotes the degradation rate if it exceeds
1.0

. usaget: the usage parameter of component ct

A component may have some usage parameters: FH (if the component is controlled
by flight hour), FC (by flight cycles), or MO (monthly preventive tasks).

Let M = {General, Airframe, Powerplant, Avionics Inspection} be a set of
aviation mechanics qualifications (qualifr) to be properly allocated as needed by the
task, and a number of available (availabler) mechanics for each technical qualification.
Each qualification (qualifr) has the attribute wager expressed in US$/h.

Let Z = {z1, z2, z3, ..., z|Z|} be a set of aircraft zones according to the ATA-100
Specification, with the following attributes: idx (zone zx identifier); areax (zone area);
and limitx (the maximum number of people to remain simultaneously in the zone zx).
Zones are designated physical areas of an aircraft that identify where maintenance
activities occur. A maintenance task can span multiple zones.

Let P = {p1, p2, p3, ..., p|P |} be a set of maintenance preparations sub-tasks, that
must be performed before or after a maintenance task, to be efficiently allocated with
the task to the set of packages, and not duplicated, as multiple tasks may use the
same preparations.

Each preparation pk has the following attributes:
• namek: a defining name for preparation pk, e.g., 141BL → in zone 141, open door

BL
• costk: preparation pk overall cost
• mhk: estimated preparation pk man-hours
• qualifk: mechanic qualification needed
• qualifr

k : numbers of mechanics for each qualification needed to execute the
preparation task pk

• typek: a preparation or a follow-on task
• nmeck: number of mechanics needed
• dtk: estimated preparation pk downtime

The cost for each preparation task pk is calculated through Equation 1.

costk = mhk · wagequalifr
k

+ matk + mhk

nmeck
· HOC, for k ∈ {1, 2, 3, . . . , |P |}. (1)

Where, HOC is the hourly opportunity cost relative to revenue’s losses, mhk is the
number of man-hour required, and nmeck is the quantity of mechanics necessary to
accomplish the preparation pk,.

Let T = {t1, t2, t3, ..., t|T |} be a set of maintenance tasks to be efficiently allocated
to one of the S packages.

By "flight time limit", we mean the maximum amount of time an aircraft can fly
before it requires major maintenance or overhaul. This limit is set based on the
Hard Time maintenance strategy, which focuses on scheduled maintenance at specific
intervals, rather than relying on monitoring the aircraft’s actual condition.
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Each task tj , has the following attributes:
• cidj : component identifier
• limj : the flight time limits to accomplished task tj

• pmcj : PM cost of tj

• pmdtj : PM downtime of tj

• pmocj : PM opportunity cost associated to pmdtj

• cmcj : CM cost associated to corrective maintenance of tj

• cmdtj : CM downtime associated to tj

• cmocj : CM opportunity cost associated to cmdtj

• ztimexr
j : time required for each qualification mr needed for task tj to be executed

in zone zx

• znumxr
j : number of mechanics of each qualification mr needed for task tj to be

executed in zone zx

• zonej : aircraft zones where the task will be executed
• qualifj : mechanic qualification needed
• nmecr

j : number of mechanics of qualification (mr) needed
• prepsj : list of preparations necessary to be accomplished prior or after task tj

A task tj may be subject to certain constraints if it is included in the same package
as another task tq. These constraints establish the relationship between the execution
of tasks tj and tq. In this study, we used, afterStartq which implies only start task
tj after a relative task tq finishes and incompatibleq implying that task tj must not
be executed at the same time as task tq.

Constraints of task tj are identified according to the Table 1

Table 1: Task Relationship Codes
Task Identification Definition

tj

afterStartq end tj after starting a relative task tq

beforeEndq end tj before ending a relative task tq

afterEndq end tj after a relative task tq finishes
startAfterq start tj after a relative task tq finishes

incompatibleq task tj must not be executed at the same time of task tq

An important concept for this chapter is the Opportunity Cost (OC). According
to Wieser (46), OC represents the potential benefits an individual, investor, or business
misses out on when choosing one alternative over another. Depending on the operating
hours per day characteristic of an airline, we may establish the hourly opportunity
cost (HOC) according to its Revenue per Available Seat Mile (RASM).

While flying, the expenses are relative to fuel consumption and other administrative
costs. While in AOG, the expenses are due to maintenance wages and supply. The
cost difference: maintenance wages plus supply minus fuel consumption and uptime
administrative costs may also be added to the HOC.

The equation 2 gives the reliability of a component ct included in task tj planned
to stoppage si occurring at each stopi interval:

Ri
t = e−( stopi

ηt
)βt

, for t ∈ {1, 2, 3, . . . |C|} , for i ∈ {1, 2, 3, . . . |S|} (2)
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The equation 3 gives the reliability of a component ct included in a task tj classified
as an Out of Phase task to be executed in op stoppage at stopp interval:

Ro
t = e−( stopp

ηt
)βt

, for t ∈ {1, 2, 3, . . . |C|} , for o ∈ {1, 2, 3, . . . |O|} (3)
Let Aj be a set of P containing the preparations necessary to accomplish the task

tj .
Let Dij be a set of preparations necessary to accomplish the task tj whenever it is

part of a package si.

Dij =
{

Aj , if xij = 1
0, if xij = 0

A task may seize preparations if it is included in a package, so its costs and time
must be accounted for only once per package si.

The total number of preparations of a package si is defined by the set Bi, and is
calculated as shown in the 4:

Bi =
m⋃

j=1
Dij (4)

The preventive maintenance cost related to labour and material for each task tj

allocated in a package is calculated through Equation 5.

pmcj =
|M |∑
r=1

mhr
j · wager + matj , for t, j ∈ {1, 2, . . . , |T |} (5)

The preventive maintenance opportunity cost for each task tj is calculated through
Equation 6.

pmocj =
|M |∑
r=1

mhr
j

nmecr
j

· HOC, for t, j ∈ {1, 2, . . . , |T |} (6)

Expression
∑|M |

r=1
mhr

j

nmecr
j

represents the PM downtime pmdtj .
The total preventive maintenance cost for each task tj is given by Equation 7

pmtcj = pmcj + pmocj , for j ∈ {1, 2, . . . , |T |} (7)

The equations 8 to 10 below give the task tj inherent corrective maintenance (CM)
cost calculations:

The corrective maintenance labour and material cost for each task tj is calculated
through Equation 8.

cmcj =
|M |∑
r=1

mhr
j · CMCF · wager + matj , for t, j ∈ {1, 2, 3, . . . , |T |} (8)

The corrective maintenance opportunity cost for each task tj is calculated through
Equation 9.

cmocj =
|M |∑
r=1

mhr
j

nmecr
j

· CMTF · HOC, for j ∈ {1, 2, 3, . . . , |T |} (9)
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Where, CMCF is a cost factor for corrective maintenance that corresponds
to the high-complexity of corrective maintenance in comparison to the preventive
maintenance. CMTF is the corrective maintenance time factor, which represents the
increase in downtime caused by unexpected contingencies and unanticipated logistics
demands, HOC is the hourly opportunity cost relative to revenue’s losses, and mhr

j is
the number of man-hour of mechanics with qualification qualifr mechanic required,
wagequalifr is the man-hour cost of a mechanic with qualification qualifr required for
task tj .

The total corrective maintenance cost is given by Equation 10

cmtcj = cmcj + cmocj (10)

Let S = {s1, s2, s3, ..., s|S|} be a set of maintenance stoppages (or work packages),
each with the attribute stopi, the aircraft maintenance stoppage, and some other
parameters to be updated after optimization:
. costi: overall work package maintenance cost
. dti: overall work package maintenance downtime
. prepsi: the set of unique subtasks associated to the work package

Let O = {o1, o2, o3, ..., o|O|} be a set of out-of-phase (OP) stoppages for some tasks
that are anti-economical to fit in the preceding regular work package si. op stays
between si and si+1 (the next stoppage). It cannot be allocated to si+1 because the
component would fly after it’s due FH.

The individual task executed as out-of-phase has the same inherent costs described
by the equation 10.

The calculation of the overall maintenance cost of an out-of-phase stoppage op is
similar to that one used for a standard work package, si except for the considerations
below:
. Estimation of the anticipated number of failures between two out-of-phase

stoppages. op where the out-of-phase limit limp is used instead of the package
stopi interval;

. There is no preparation cost savings, since each out-of-phase stoppage op has only
one task tj .

. The computation considers an out-of-phase factor OPfactor, which defines
how important it is to the operator to include out-of-phase stoppages in the
maintenance plan.

Let Bi = {bi
1, bi

2, bi
3, ..., bi

|Bi|} be a set of maintenance bins which are partitions of
maintenance work packages (Figure 4). I.e., each package is composed of subsets of
tasks grouped by bins of concurrent tasks. These bins hold as many tasks as the
number of mechanics of each qualification available or the limit of personnel for the
task zone, whichever is less. If this number is exceeded, a new Bin must be used to
hold other tasks for the same mechanics (or for the same zone) from the previous Bin.

As to the Bin downtime (dti
b), it may be accounted as the longest task and the

overall bins downtime may be minimized by minimizing the number of bins.
In general, the task constraints defined in the Table 1 that refer to related tasks in

the same Bin would be applied; however, only the startAfterj and incompatiblej is
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stopi

| bi
1 | bi

2

dti
2

| ... | bi
|Bi| |

stopi+1

costi

dti = ∑|Bi|
b=1 dti

b

Figure 4: Work package bins

managed in this work, as the referred task must be in one of the previous bins and
tasks that are not compatible must not be in the same bin.

Any resolution method to be used will output an optimal (or close to optimal)
solution that expresses the allocations of tasks and their preparation works to regular
packages or to out-of-phase stoppages, and tasks in packages to bins.

To permit this, we define 3 vectors of binary decision variables: (1) Xij , to allocate
task tj and its preparations prepsj to work package si; (2) Opj , to allocate task tj

its preparations prepsj , not included in the regular work packages, to out-of-phase
stoppage op; (3) Wjb to allocate task tj to bin bb.
• The binary variables Xij = 1 if task tj is assigned to maintenance package si, and

0 otherwise.
• The binary variables Opj = 1 if the task tj is assigned to an out-of-phase stoppage

op, and 0 otherwise.
• The binary variables Wjb = 1 if task tj is allocated to the bin bb, and 0 otherwise.

Equation 19 states the Objective Function with four parcels:
• The equation 11 corresponds to the package preventive maintenance costs parcel,

including the amount relative to the costs of the preparations after respective savings

pmci
j = Ri

t ·

pmcj + pmocj +
n(Bi)∑
q=1

prepcq

 (11)

• The equation 12 corresponds to the expected corrective maintenance costs if the
task tj is included in the package, si

cmci
j =

(
1 − Ri

t

)
· (cmcj + cmocj) (12)

• The equation 13 corresponds to the out-of-phase stoppage preventive maintenance
cost. In this case, there are no savings as regarding the preparations.

pmcp
j = Ri

t ·

pmcj + pmocj +
n(Ai)∑
q=1

prepcm

 (13)
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• The equation 14 corresponds to the expected corrective maintenance costs if the
task tj is included in the out-of-phase stoppage Op

cmcp
j =

(
1 − Ri

t

)
· (cmcj + cmocj) (14)

Equations 15 and 16calculates the flight hour unused. I.e., how much flight hours
the aircraft did not fly for being stopped before its flight limit.

unusedP j
i = ⌈stopi

limj
⌉ − stopi

limj
, for j ∈ {1, 2, 3, ..., |T |} and for i ∈ {1, 2, 3, ..., |S|}

(15)

unusedOj
p = ⌈stopp

limj
⌉ − stopp

limj
, for j ∈ {1, 2, 3, ..., |T |} and for i ∈ {1, 2, 3, ..., |S|}

(16)
Equation 19 states the first Objective Function that minimizes the maintenance cost

of all tasks |T | and preparation |P | in the defined horizon |S|, if tasks and preparations
are allocated to work packages. It also attempts to minimize the unused hours costs.

task_costs =
|S|∑
i=1

|T |∑
j=1

Xij ∗
(

cmpi
j + cmci

j + unusedP j
i · HOC

)
(17)

prep_costs =
|O|∑
p=1

|T |∑
j=1

Opj ∗
(
cmpp

j + cmcp
j + unusedoj

p · HOC
)

(18)

Min {task_costs + prep_costs} (19)

Subject to:

Xij · unusedP j
i >= 0, for j ∈ {1, 2, 3, ..., |T |} and for i ∈ {1, 2, 3, ..., |S|} (20)

Opj · unusedOj
p >= 0, for j ∈ {1, 2, 3, ..., |T |} and for o ∈ {1, 2, 3, ..., |O|} (21)

Equations 20 and 21 hinder a component from flying beyond its time limit.

|S|∑
i=1

Xij +
|O|∑
p=1

Opj >= ⌊
stop|S|

limj
⌋, for j ∈ {1, 2, ..., |T |} (22)

Equation 22 guarantees that the task tj is executed at least ⌊ stop|S|
limj

⌋ times in planned
horizon.

lastt = lastt · (1 − Xaj) + stopa · Xaj , for t ∈ {1, 2, ..., |C|} (23)

For i ∈ {1, 2, ..., |S|}, a ∈ {1, 2, ..., i − 1}, the last component stoppage is calculated
(Equation 23).
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|P |∑
k=1

|Bi| = Xij (24)

For i ∈ {1, 2, ..., |S|}, k ∈ {1, 2, ..., |P |}, if the task is associated to the work package
(Xij = 1), the preparation pk will be unique (Equation 24). I.e., the same door will
not be opened or closed more than once.

|M |∑
r=1

|Z|∑
x=1

Xij · znumxr
j > 0, for j ∈ {1, 2, ..., |T |} (25)

For x ∈ {1, 2, ..., |Z|} and i ∈ {1, 2, ..., |S|}, the number of mechanics of task zones
must be greater than zero or the task will not be included (Equation 25).

The TAPP is solved at this point; tasks are associated with work packages, but
their sequence and packing are not defined. So, we solve a Bin Packing Problem by
minimizing the number of bins through packing tasks as efficiently as possible.

minimize |Bi| (26)

Equation 26 states the second Objective Function that minimizes the number of bins.
This minimization also minimizes the overall downtime.

Subject to:

|Bi|∑
b=1

Wjb = 1, for j ∈ {1, 2, ..., |T |} (27)

Each task must be in exactly one Bin, if it is associated to the Bin (27).

|T |∑
j=1

|M |∑
r=1

Wjb · znumxr
j <= limitx (28)

For each b ∈ {1, 2, ..., |Bi|} and for each x ∈ {1, 2, ..., |Z|}, the number of mechanics
cannot exceed the zone limit (Equation 28).

|T |∑
j=1

|Z|∑
x=1

Wjb · znumxr
j <= availabler (29)

For each b ∈ {1, 2, ..., |Bi|} and for each r ∈ {1, 2, ..., |M |}, the number of mechanics
cannot exceed the available for each qualification (Equation 29).

Wt1,b1 · b1 < Wt2,b2 · b2, for (b1, b2) ∈ {1, 2, 3, ..., |Bi|}, for (t1, t2) ∈ {1, 2, 3, ..., |T |}
(30)

Equation 30 guarantees that task t2 will be put in bin b2, which is posterior to bin b1
because task t2 must start after t1 is finished (t1 = StartAftert2).

Xb
ic = 1 − Xb

id (31)
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For c, d ∈ {1, 2, ..., |T |}, i ∈ {1, 2, ..., |S|}, and b ∈ {1, 2, ..., |Bi|}; and for c ∈
incompatibled or d ∈ incompatiblec, as c and d are segregated tasks, Equation 31
guarantees that they will not be executed in the same bin.

5.0 Results and discussions
To evaluate the performance of the ETTAPS framework proposed in Section 3, we
conducted a series of computational experiments. We built the framework for these
tests using Python, the CBC solver, and the scikit-learn library. We then tested
the framework in various scenarios, varying the number of tasks, task dependencies,
maintenance intervals, and data availability. The goal of these experiments was to
assess the effectiveness of ETTAPS in optimizing maintenance plans and improving
cost-effectiveness, resource utilization, and system availability, as well as to analyze
the impact of the learning mechanism on the optimization process.

5.1 Optimization with Branch-and-Cut and FFD
Following the work of Almgren et al. (3) who utilized the Branch-and-Cut framework
and observed a reduction in Branch-and-Bound nodes and simplex iterations for most
problem instances with time-dependent costs, we also adopted this approach to solve
the integer programming portion of the Task Allocation and Packing problem. Their
work aimed to find optimal opportunistic maintenance schedules that maximize the
replacement interval, similar to our goals. The mathematical formulation used in this
context can be found in subsection 4.4.

This approach is particularly suited for ETTAPS, as it effectively handles the
combinatorial complexity of maintenance task allocation by reducing the solution
space through intelligent branching.

To enhance the gains in the availability, we implement the use of the First-Fit
Decreasing (FFD) proposed by Johnson (24).

FFD was selected due to its computational efficiency in solving bin-packing-like
problems, as opposed to alternative heuristics like Best-Fit or Next-Fit, which do not
prioritize larger tasks for earlier allocation.

We also ran simulations to mimic the process depicted in Figure 1.

5.2 Simulation Results
Tests with different steps were conducted to verify the influence of the value of the
step in optimization of grouping tasks around common preparations.

Figure 5 shows the results of simulations involving 85 maintenance tasks scheduled
at intervals ranging in [20, 50, 100, 150, 200] flight hours. We analysed these different
intervals to understand the potential advantages and disadvantages of using shorter
intervals over three years, with a total flight time of 4,500 hours.

These maintenance intervals were selected through a trial-and-error experimental
approach, starting at 10-hour intervals with 1-hour increments. This process
aimed to identify potential improvements in overall cost and availability. We
observed significant variations in the performance of different intervals, leading us
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to continue experiments with the selected values, which showed meaningful impacts
on optimization outcomes.

Extensive simulations were performed for each interval to assess the impact. The
maximum interval (200 hours) was chosen because some components have shorter
lifespans and require more frequent maintenance.
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Figure 5: Step Length Influence

Our experiments revealed that increasing the maintenance interval generally leads
to improved cost-effectiveness and equipment availability. However, it’s important
to note that 200 hours is the minimum interval considered for the tasks in our
sample. This minimum interval is often determined by market demands during the
initial development phase of a new product. Therefore, all generated maintenance
requirements must adhere to these minimum interval limitations.

Table 2 summarizes the results of 20 experiments comparing two maintenance
scheduling methods: a simple heuristic method and the ETAPPS+FFD optimization
method. Each experiment considered a fixed maintenance interval of 200 hours and a
total annual flight time of 1,500 hours.

Table 2: 200-hour Steps Tasks Distribution
Opt Ao Cost (M$)
No 0.80 14.7
Yes 0.87 11.6

The simple heuristic method mimics the existing practice of assigning tasks solely
based on engineering expertise. In contrast, the ETAPPS+FFD optimization method
utilizes both Branch-and-Cut and FFD algorithms to achieve optimal scheduling. The
effectiveness of the proposed optimization model is evident, consistently demonstrating
similar levels of improvement across various experiments involving different task
numbers and operational profiles.

We also conducted tests with a sample of tasks that are common in commercial
transport aircraft. We used the intervals shown in the MPD as the maximum
permitted interval for the systems, structures, and zonal tasks. We simulated task
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allocation in packages using the present technique and compared it to the optimized
results supplied by ETTAPS. Table 3 shows the results:

Table 3: Experiments results: 700 tasks and standard profile
Total cost CM cost FH cost Runtime

Method FFD Availability ($) ($) ($/FH) (ms)
Simple no 0.7639 22,815,444.79 1,576,749.96 912.62 7.71

ETAPPS yes 0.8248 20,096,094.56 1,418,235.53 803.84 80.726

The findings consistently showed that using the ETAPPS resulted in an optimized
task distribution. The ETTAPS capitalizes on the economic benefits of joining tasks
that share the same preparations and access. There is also a gain in cost and
availability associated with a lower likelihood of system failure.

The worst-case results expected from this work are an optimized maintenance plan,
with tasks being allocated to maintenance packages in the most efficient schedule.

The best-case results are the long-term optimization of costs and improved resilience
of the maintenance system, as new data is constantly included in the learning and
optimization process and the task schedule is fine-tuned at each maintenance cycle.

Contextualizing the Results with Existing Literature
Our findings align with broader trends in aviation maintenance optimisation,
highlighted by the historical shift from traditional pre-packaged maintenance checks
(A, B, C, and D), originally employed for aircraft such as the Boeing 777, to
contemporary approaches emphasising individual task intervals based on usage
parameters (flight hours—FH; flight cycles—FC; landings—LD).

This shift parallels the industry’s evolution from MSG-2’s component-level,
process-oriented methods to MSG-3’s system-level, task-oriented logic, optimising
both safety-critical and economic tasks Ackert (1).

Recent studies further illustrate this evolution. For instance, Deng et al. (7)

introduced Decision Support Systems to allocate maintenance tasks based on resource
availability. Similarly, Li et al. (29) examined the equalisation and recombination
of A-Check tasks, while Senturk and Ozkol (39) focused on single-task scheduling to
enhance fleet availability.

Building upon these advancements, our research integrates predictive analytics with
optimisation algorithms (ETTAPS + FFD), explicitly grouping tasks to capitalise
on shared preparations. This approach minimises downtime and reduces corrective
maintenance, thereby offering a comprehensive framework that dynamically adapts
maintenance plans to evolving operational demands.

5.3 Predictive Modeling with Random Forest
The Random Forest regression included in the Scikit-learn Pedregosa et al. (34) package
was used to explore the dataset and select the best fit mapping function. Part of the
data is dedicated to training the prediction model.
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The main results of tests are presented together with the influence of the learning
mechanism after some cycles of tests.

At this time, the historical records have not affected optimization; ML still forecasts
a cost increase, but optimized maintenance plan records will feed the learning
mechanism, which will probably result in an overall cost reduction.

We extract features such as the time since last maintenance and sensor readings
from historical maintenance logs. The Random Forest model is retrained monthly
using a rolling 24-month data window. Retraining improves predictive accuracy (e.g.,
AUC increases from 0.77 to 0.85), resulting in 27.4% lower maintenance costs and
1.0% increase in availability in five operations/maintenance cycles, according to Table
4.

Features were selected using recursive feature elimination (RFE) to identify the
most influential predictors of maintenance needs. The predictive model used 1500
maintenance records. Limited data availability constrained the sample size. 5-fold
cross-validation achieved an average AUC of 0.85, suggesting sufficient generalization
for this application.

Table 4 depicts the effects of using the learning capability on the optimization
process (Aa is the achieved availability). The resilient planner learned after exploring
historical data during the maintenance cycles. This confirms the hypothesis.

Table 4: Influence of ML on optimization
Operations/Maintenance Cycles

First Second Third Fourth Fifth
Aa 0.965 0.970 0.973 0.974 0.975

Cost (M$) 2.15 1.77 1.61 1.58 1.56

These results demonstrate ETTAPS’ advantages in cost and availability compared
to a baseline scenario. Due to space limitations, detailed cost distributions and task
allocations are not included but are available upon request. ETTAPS achieves cost
reductions by intelligently grouping tasks based on dependencies and predicted failure
probabilities, minimizing redundant preparation efforts and overall maintenance
downtime. This is reflected in the lower mean costs and improved availability metrics
presented in the tables.

5.4 Limitations

As a limitation, the immediate reaction capacity of the resilient maintenance
planner was not considered in this work, as the number of records produced during
experimentation was not enough to guarantee an acceptable level of confidence.
However, with new operating and maintenance records, we believe that soon lower
maintenance costs will be observed.

Future work will explore integrating real-time anomaly detection into ETTAPS,
enhancing its ability to dynamically adapt to unexpected component failures.
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5.5 Qualitative Analysis of Results
While a comprehensive quantitative validation with real-world data is a subject for
future research, we can offer some qualitative insights based on observed trends and
expert knowledge. For instance, the model’s tendency to group related tasks within the
same maintenance package aligns with established maintenance practices, which aim
to minimize aircraft downtime by coordinating maintenance activities. Furthermore,
task prioritization based on predicted failure probabilities is consistent with expert
knowledge in risk management for aircraft maintenance, where components with a
higher risk of failure are often given priority. These qualitative observations, while
not definitive, provide initial support for the practical applicability of the ETTAPS
framework.

5.6 Conclusion
The ETTAPS framework, combining Branch-and-Cut optimization with First-Fit
Decreasing task grouping and a Random Forest predictive model, effectively optimizes
aircraft maintenance plans, improving cost-effectiveness, resource utilization, and
system availability. While further validation with real-world data is needed, the
results demonstrate ETTAPS’ potential for achieving resilient and sustainable aviation
maintenance practices.

The framework’s modular design makes it adaptable for integration into existing
airline maintenance management systems, facilitating deployment without major
infrastructural changes.

6.0 Conclusions
This article introduces the Efficient Task Allocation and Packing Problem Solver
(ETTAPS), a novel framework that integrates predictive analytics and optimization to
enhance cost efficiency, resource utilization, and system availability in the maintenance
of highly complex aircraft systems.

Our findings demonstrate that the integer programming step of ETTAPS, when
combined with task grouping via the First-Fit Decreasing algorithm, significantly
improves maintenance efficiency and system resilience. By addressing factors such
as mechanic skills, physical capacity constraints, and task relationships, ETTAPS
broadens the traditional scope of maintenance planning to meet the dynamic demands
of modern aviation operations.

The integration of data-driven learning ensures continuous improvement by
incorporating new maintenance data and fine-tuning plans with each maintenance
cycle. This approach bridges critical gaps in the MSG-3 and certification analysis
processes, enabling the development of robust maintenance plans that reduce
downtime, optimize costs, and enhance operational readiness.

Furthermore, our experiments confirmed that leveraging a rolling 24-month data
window for retraining the predictive model improves forecasting accuracy, leading
to an overall reduction in maintenance costs and an increase in availability. The
combination of machine learning and mixed-integer programming within ETTAPS
ensures that task allocation remains both adaptive and economically efficient over
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successive operational cycles.
While ETTAPS demonstrates clear advantages in optimizing maintenance

schedules, limitations remain regarding its immediate reaction capability to unforeseen
failures. Future improvements should integrate real-time anomaly detection and
explore reinforcement learning-based approaches for dynamic decision-making.

Looking forward, future research should investigate the integration of ETTAPS with
advanced technologies such as digital twins and flight planning systems, fostering
real-time maintenance decision-making. Collaboration with regulatory bodies and
industry stakeholders could further refine the framework for broader adoption.
Additionally, exploring the potential for commercialization and scalability across
diverse aircraft models offers promising opportunities for practical implementation.

This research establishes a foundation for transforming aircraft maintenance
planning by combining optimization models with data-driven learning. ETTAPS
aligns with Industry 4.0 and aviation sustainability goals, representing a significant
step toward an intelligent, proactive maintenance ecosystem that optimizes processes
and enhances aircraft operational efficiency and resilience.
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