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Abstract 
 

 

Prescriptive maintenance (PsM) is a proactive approach enabled by the Internet of Things (IoT), 

asset health prognostics, and prescriptive analytics that aims to optimize maintenance by 

prescribing a course of action. In a challenging context, in which industries face shortage of 

workforce and fierce competition, complex systems operating in dynamic operations are 

supported by traditional maintenance practices, that based on reactive or preventive approaches, 

often result in inefficiencies, high costs, and unexpected equipment failures. To address these 

challenges, a new PsM-based optimization framework is required to process the information 

available and recommend possible maintenance actions holistically, considering both operation 

and support. Therefore, the purpose of this research is to demonstrate that maintenance 

efficiency and effectiveness can be improved through the implementation of a PsM framework 

that provides optimal course of action, is adaptable across different industries and extensible to 

assets with different technological maturities. To achieve these objectives and highlight the 

novelty of this work, a comprehensive review of existing literature on prescriptive maintenance 

is presented, followed by the design and verification of a PsM Mixed-Integer Linear 

Programming (MILP) based optimization framework. The framework is tested in real-world 

case scenarios, through three experiments, that include a Brazilian regional airline operation 

and the São Paulo state health system's pandemic response. The two experiments with the 

airline demonstrated the framework’s efficacy, achieving increases of 36.16% and 26.41% in 

fleet availability, along with profitability improvements of 0.81% and 406%, respectively. The 

health system experiment further highlighted the framework’s adaptability, showing a potential 

65% increase in patients’ survivorship. These results provide valuable insights and guidance 

for researchers and practitioners, emphasizing the viability and potential of the prescriptive 

maintenance paradigm. 
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Resumo 
 

 

A manutenção prescritiva (PsM) é uma abordagem proativa possibilitada pela Internet das 

Coisas (IoT), prognósticos de saúde dos ativos e análises prescritivas que objetiva otimizar a 

manutenção recomendando ações. Num contexto desafiador, em que as indústrias enfrentam 

escassez de mão de obra e forte competição, sistemas complexos que operam em operações 

dinâmicas são apoiados por estratégias tradicionais de manutenção, que baseadas em 

abordagens reativas ou preventivas, muitas vezes resultam em ineficiências, custos elevados e 

falhas inesperadas de equipamentos. Para enfrentar estes desafios, é necessária uma nova 

abordagem de otimização baseada em PsM para processar as fontes de informação disponíveis 

e recomendar possíveis ações de manutenção de forma holística, considerando tanto a operação 

como o suporte. Portanto, o objetivo desta pesquisa é demonstrar que a eficiência e a eficácia 

da manutenção podem ser melhoradas através da implementação de um arcabouço baseado em 

PsM que forneça a melhor recomendação possível, seja adaptável a diferentes indústrias e 

extensível a ativos com diferentes maturidades tecnológicas. Para atingir estes objetivos e 

destacar a novidade deste trabalho, é apresentada uma revisão da literatura existente sobre 

manutenção prescritiva, seguida pela apresentação e verificação de um arcabouço de otimização 

baseado em PsM e programação linear inteira-mista. O arcabouço é testado em situações 

vivenciadas no mundo real, por meio de três experimentos, que incluem a operação de uma 

companhia aérea regional brasileira e a resposta à pandemia do sistema de saúde do estado de 

São Paulo. Os dois experimentos com a companhia aérea demonstraram a eficácia do 

arcabouço, conseguindo aumentos de 36,16% e 26,41% na disponibilidade da frota, juntamente 

com melhorias na rentabilidade de 0,81% e 406% respetivamente. O experimento no sistema 

de saúde destacou ainda mais a adaptabilidade do framework, mostrando um aumento potencial 

de 65% na sobrevivência. Estes resultados fornecem informações e orientações valiosas para 

pesquisadores e profissionais, enfatizando a viabilidade e o potencial do paradigma da 

manutenção prescritiva. 
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1 Introduction 
Prescriptive Maintenance (PsM) is an emerging strategy that aims to optimize 

maintenance by utilizing data-driven, model-driven techniques and prescriptive analytics 22, 23, 

24, 27, 78. Legacy maintenance practices are based on reactive or preventive approaches, where 

maintenance actions are triggered by failures or predefined time-based intervals respectively. 

These approaches can be inefficient and costly, as they may lead to unnecessary maintenance 

activities or unexpected equipment failures 24, 58, 64, 104, 108, 109, 110. 

In recent years, the advent of the Internet of Things (IoT) and the proliferation of sensor 

technologies have enabled the collection of large volumes of data from equipment, systems, 

and resources. This data, when properly analyzed, can provide valuable insights, allowing for 

a more proactive and targeted maintenance approach. PsM leverages this data and employs 

techniques such as machine learning, statistical modeling, and optimization algorithms to 

optimize maintenance decisions, reduce downtime, and improve overall asset performance, 

which is particularly useful in dynamic operations of complex systems such as the aerospace 

and health 6, 54, 56. 

Despite the potential benefits of PsM and examples of PsM-based solutions with 

development recently announced113, its implementation in industrial 4.0 settings, which 

operates complex systems in highly dynamic environments, poses several challenges. Firstly, 

Industry 4.0 organizations, often struggle with the integration and management of 

heterogeneous data sources from different equipment and systems. This includes data from 

sensors, maintenance logs, historical records, and other relevant sources 5, 6, 8, 9, 30, 32, 52, 55, 58, 60, 

65, 84. Secondly, there is a need for developing accurate and reliable models that can effectively 

predict equipment failures or degradation5, 23, 32, 52, 54, 55. Additionally, decision-making 

algorithms and optimization techniques must be developed to identify the most suitable 

maintenance actions based on the predicted outcomes, costs, operating parameters, maintenance 

activities, and maintenance resources. And, finally, developers are struggling to propose 

extensible or scalable frameworks, undermining large industrial adoption.  

The successful implementation of PsM has the potential to revolutionize the field of 

maintenance management, since, by adopting a data-driven and proactive approach, 

organizations can optimize not only maintenance activities but also operations, increasing 

equipment availability. 
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1.1 Context, Research Problem and Motivation 
 

The aviation industry is one of the most important transportation sectors, having a 

significant impact on the socio-economic development of society1. However, as presented by 

[6], the aviation market is also characterized by very strong competition and rapid changes 

brought by deregulation, fast technology improvements, and industry consolidation. On top of 

that, the main aeronautical players, such as original equipment manufacturers (OEMs) and 

maintenance repair and overhaul (MRO) organizations, are facing a lack of workforce 8, 9, 132, 

133 and pressure to lower emissions to boost sustainability1, 2, 3. Despite the competition, 

operational costs raise, workforce crisis, and the sustainability new requirements, affordable 

airfares continue to be expected by passengers6 putting more pressure on the industry and 

resulting in a challenging context capable of putting 34 airliners out of business in 2021 alone7, 

in the midst of the COVID pandemic. In 2024, although airlines are expected to transport almost 

5 billion people globally, and reap a record net profit high of USD 25,7 billion, the net profit 

margin is as low as 2,7%, that is, 4% less than the cost of capital134, emphasizing even more 

how challenging the operational environment is.   

In this context, a new maintenance strategy is needed to overcome these challenges by 

augmenting current workforce capability and skills, lowering asset life cycle cost, and 

optimizing maintenance resources while increasing asset availability and boosting 

sustainability: Prescriptive Maintenance (PsM) is becoming the strategy to follow that could 

solve at least part of the challenge. Although what PsM entails might not be clear as several 

definitions have been presented over the years - authors have not agreed on a unified concept - 

for the sake of setting the grounds this author defines PsM as a proactive maintenance strategy 

enabled by the internet of things (IoT), asset health prognostics and prescriptive analytics, 

provides a course of action prescription to optimize maintenance and maximize asset 

availability.  

Figure 1.1 depicts the potentialities of this new paradigm. Unlike traditional 

maintenance processes, which rely on fixed, scheduled tasks, the proposed prescriptive 

maintenance approach considers the current predicted aircraft’s health status, support resources, 

and operation requirements. This allows for proactive scheduling of tasks during preferred time 

slots, based on available resources at the designated maintenance base, thereby avoiding 

operational disruptions such as flight delays. By extending the window for necessary 
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maintenance tasks, it is possible to reduce waiting times for occupied resources, as the increased 

number of maintenance opportunities allows for greater flexibility in task allocation. 

Figure 1.1 also introduces the main differences between predictive maintenance 

scheduling and prescriptive maintenance scheduling. While the predictive allows us to find 

maintenance windows so that the asset receives adequate maintenance, does not care about the 

issue of maintenance logistics. Only informs the remaining useful life windows of each asset. 

Meanwhile, prescriptive maintenance evaluates the capacity of maintenance logistics to decide 

to advance maintenance of aircraft 1 (AC 1) so that all resources are available and do not impact 

the maintenance and operation of other fleet assets (AC 2). This advantage of prescriptive 

maintenance has a price, which is to deal with a larger number of variables and therefore a 

smaller horizon to maintain the same ability to find satisfactory results in a timely time. 

Another example of PsM implementation would be in a situation in which not all 

hangars at the destination have the same support capability: in this context, what would the best 

action be in terms of operation and support resources in case of asset failure? To perform the 

original flight to the location with no support capability and spend more to direct labor and 

material to repair the aircraft? Or divert the flight to an airport with the necessary support and 

reassign the rest of the fleet? 

The proposed PsM approach also aligns seamlessly with the concept of a digital twin 

environment, which serves as a real-time virtual replica of the physical fleet, its operational 

ecosystem and support resources. This integration enables a bidirectional flow of information, 

where data from the digital twin informs the optimization framework for PsM, and the 

optimization decisions made by the framework are reflected back into the twin. This dynamic 

interaction allows for real-time monitoring, predictive insights and course of action 

recommendation within a shorter time horizon. As a result, the adoption of a Mixed-Integer 

Linear Programming (MILP) model becomes not only feasible but also practical for capturing 

the complexities of fleet-wide operations in dynamic and constrained environments. By 

incorporating the digital twin’s real-time data, the MILP framework can process uncertainties, 

adapt to evolving conditions, and propose optimized solutions that balance immediate 

operational demands and maintenance requirements with resources availability. 

Reducing maintenance-related downtimes and at the same time maximizing operation, 

enables aircraft operators to improve asset utilization rates and minimize costs associated with 

operational irregularities, such as passenger compensation. Extending this concept to other 

complex systems, PsM emerges as a transformative solution that leverages the latest 
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advancements in IoT, analytics, and proactive strategies to address the critical needs of Industry 

4.0. 

 

Figure 1.1 – Differences between predictive and prescriptive maintenance scheduling.  

                   Source: Reproduced with permission from Meissner, 2021 

The challenging context described at the beginning of this chapter is the author’s 

motivation behind the idea of implementing the prescriptive maintenance philosophy. The 

following research problem justifies this research:  

Industry 4.0 is changing the perception of maintenance: from monitoring the 

degradation state of components and anticipating their failures to prescribing the most suitable 

action to optimally manage the whole system considering the dynamic operation environment 

in which it is embedded104, 56, 106, 107. This requires the development of an optimization 

framework suitable to process all sources of information available, with the associated 

uncertainties, manage different system states, and recommend possible maintenance actions 
104, 107.  

As will be shown in chapter 2.2 Literature Review, an optimization framework capable 

of processing all information related to maintenance such as labor, tooling, infrastructure, 

material repair, operational requirement, maintenance imperfections, and scalability has not 

been proposed so far.. 

This is a problem worth solving since, as described, at the beginning of this chapter, the 

scarcity of labor accompanied by dynamic operations, the competitive environment, and the 

operation's high performances expected by customers, constitute challenges that pose a threat 

to the existence of entire organizations and their business models. Thus, since maintenance 
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ranges from 40% to 70% of the industry operations costs105, finding a way to reduce 

maintenance expenditures while maximizing operation is paramount. 

 

1.2 Research Question 
 

The research question was identified by analyzing the research problem. Thus, the first 

part of the research question addresses the necessity of providing an optimization framework 

capable of prescribing a maintenance course of action considering all resources involved and 

maintenance imperfections. Thus, the first part of the research question addresses the necessity 

of providing an optimization framework capable of prescribing a maintenance course of action 

considering all resources involved, maintenance imperfections, and uncertainties.  

Additionally, the Literature Review, as it will be showcased in Chapter 2, has revealed 

that other open issues related to the research problem need to be addressed: the framework's 

extensibility to assets with different maturities and adaptability to different industries, which is 

relevant since it affects the scalability of the framework and its generalizability.  

The research question is presented in Table 1.1. 

Table 1.1 – Research question. 

How maintenance efficiency can be improved through an optimization 
framework for prescriptive maintenance which: 

Considers 
1. Maintenance resources involved namely labor, tools, and infrastructure? 

2. Maintenance imperfections? 

Is 
3. Extensible to different assets with different technological maturities? 

4. Adaptable to different industries, namely aerospace, and health? 

Provides 5. Optimized maintenance course of action? 

 

 
1.3 Hypothesis  
 

The hypothesis is that the problem described in Chapter 1.2 can be solved with an 

optimization framework for prescriptive maintenance, enabled by the IoT, failure prognosis and 
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prescriptive analytics and capable of maximizing maintenance efficiency and effectivity 

through optimized course of action prescription.  

 

1.3.1 Hypothesis Justification 
 

PsM solutions have provided significant results in recent research works: prescriptive 

maintenance has been successfully implemented framework for an automated pressure 

monitoring system of an Airbus A32054, in which four different maturities levels in terms of 

automation and prognostics capabilities were considered. The results presented a decrease of 

34% in maintenance cost compared to conventional maintenance strategies54 and an increase in 

aircraft availability56. PsM on a railway infrastructure system it has been also implemented49, 

obtaining a reduction of total completion time and an improvement of the balance of 

maintenance teams’ workloads in terms of number of activities executed and length of the paths 

covered by each maintenance team, in comparison to the previous preventive maintenance 

strategy49. In another work PsM framework has been implemented on a brake system of 

industrial automotive vehicles obtaining consistently lower maintenance costs, through the 

exploitation of a dynamic schedule, while respecting operational constraints62. This author also 

has shown that a PsM, adopted in a wing assembly line, could improve Overall Equipment 

Effectiveness (OEE) by almost 5% and assembly robot availability by almost 3% once the PsM-

based system took into consideration technicians' skills for maintenance scheduling55.   

 
1.4 General Objective 
 

The general objective of this work is to demonstrate that maintenance efficiency and 

effectiveness can be improved by implementing and verifying a smart optimization framework 

for Prescriptive Maintenance, which provides an optimal course of action, is extensible across 

industries, is adaptable to assets of different technological maturities, considers maintenance 

resources and imperfections.  

Further details about how to achieve the general objective are provided in Section 1.5 

focuses on describing the specific objectives. 
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1.4.1 General Objective Justification  

 

As stated in Section 1.1, dynamic operations, such as the aviation industry, are facing 

ever-increasing competition pushing organizations to lower their operating costs56 making 

maintenance, that contributes from 40% to 70% of the overall industry operation cost105 and at 

least  20% of airline operations cost56,  one of the major concerns of the industry and 

transportation sectors24. However, existing maintenance philosophies, as stated in Section 1.1, 

do not meet current Industry 4.0 complex systems and their dynamic operation requirement.  

These limitations, thus, represent important opportunities for improvement that can be 

addressed by this research and partly left for future work as the objective of PsM 

implementation. 

 

1.5 Specific Objectives 
  

The specific objectives must be non-trivial, and verifiable and constitute the general 

objective subproducts111. Thus, this author has selected specific objectives that will support the 

demonstration of maintenance efficiency improvement by the adoption of the PsM framework 

described in Section 1.4: 

1. Specific objective 1: verify maintenance cost decrease because of PsM 

implementation in aeronautical operation.  

2. Specific objective 2: verify, for aeronautical operation, if asset availability is 

greater or equal to the availability obtained using traditional maintenance 

strategies. 

3. Specific objective 3: verify if results obtained in specific objectives 1 and 2 are 

adaptable to other dynamic operations, namely, the health industry. 

1.6 Original Contribution 
 

This research presents original contributions that expand the practical application of 

PsM across industries and operational settings. Through a series of real-world experiments and 

the development of a comprehensive framework, this study demonstrates how PsM can be 
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valuable. The following contributions highlight the innovative aspects and implications of this 

work: 

1. The implementation of the PsM framework in an experiment based on a real case 

scenario constituted by more than 200 aircraft, and 9 different platforms, 

simulating the operation in more than 150 destinations considering the 

variability of support capability across Depot, Intermediate, and Organizational 

hangars, and different maintenance requirements (A-check, C-check and 

unscheduled), considering Prognostics Health Management (PHM). 

2. The test of the framework adaptability from aeronautical to the health industry 

addresses a real case scenario of more than 1000 patients admitted in more than 

200 public hospitals during the COVID-19 pandemic response in 2021. 

3. The implementation of an optimization algorithm that considers 14 days of 

operation, variability of support capability by ATA chapter and by hangar, and 

that is capable of prescribing tasks and ground support equipment (GSE) based 

on the specific failure and resources (labor and GSE) availability. It is important 

to clarify that the ATA Chapter system is a way to organize the aircraft systems 

into numbered chapters and subchapters for easy reference161. Chapter 2.1.2 will 

further explain the ATA Chapter’s concept. 

4. The proposal of a generic prescriptive maintenance framework that can be used 

in all industries. 

The experimental implementation in both aeronautical and healthcare settings highlight 

the method’s adaptability. The development of an optimization algorithm capable of 

prescribing tasks based on resource availability adds a layer of practical value.  

 

 

 



   30 
 
 

1.7 Thesis Organization 
 

This thesis presents in Chapter 2 the theoretical framework and literature review, 

Chapter 3 discusses the research development methods and materials used, Chapter 4 presents 

the experiments, in Chapter 5 showcases the experiments’ results, limitations, and future work 

recommendations. In Chapter 6 the references are listed and in Chapter 7 the appendix is 

presented. Table 1.2 presents this organization. 

Table 1.2 – Thesis organization. 

Chapter Description 

2 
Theoretical framework and 
literature review 

3 Materials and methods 

4 Case studies 

5 Conclusion and future work 

6 References 

7 Appendix 
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2 Theoretical Framework and Literature Review 
 

The theoretical framework, presented in Section 2.1, introduces the maintenance 

concepts, optimization problem definitions, airline operations characteristics, and public health 

system similarities to aeronautics operations. Section 2.2 is focused on presenting a systematic 

literature review directly related to PsM, the prominent future work, and the research gaps 

addressed by this work to highlight its original contribution.  

 

2.1 Theoretical Framework 
 
2.1.1 Maintenance 
 

Maintenance is defined as the combination of technical and administrative actions, that 

ensure that a system is in its required functioning state, and it is related to actions such as 

repairing, replacing, overhauling, inspecting, servicing, adjusting, testing, measuring, and 

detecting faults18. Maintenance is classified according to the following strategies19: 

 
• Total Production Maintenance (TPM): it is production-based and 

implemented by all employees, from senior management to operators 

encompassing all the organization’s departments. It has 5 pillars namely, 

improving equipment effectiveness, improving maintenance equipment and 

effectiveness, ensuring early equipment management and maintenance 

prevention, and providing training to all people involved in routine 

maintenance19. 

• Total Life Cycle Cost (TLC): it is a systemic approach to managing 

maintenance from asset inception to disposal. The Program Manager is the 

single point of accountability for accomplishing maintenance program 

objectives, consequently, he is responsible for the implementation, management, 
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and/or oversight of activities associated with the system’s development, 

production, sustainment, and disposal20.  

• Reliability Centered Maintenance (RCM): it is based on preserving functions, 

identifying failure modes that can defeat the functions, prioritizing functions (via 

the failure modes), and selecting effective preventive maintenance tasks21. 

• Corrective Maintenance: it is a maintenance strategy where maintenance is 

performed after equipment failure. Unlike reactive maintenance, run-to-failure 

maintenance is adopted deliberately for some assets which would be too costly 

for the adoption of a proactive or preventive strategy18.  

• Preventive maintenance (PM): it was introduced in the 1950s, after the 

recognition of the need to prevent failure, PM has been adopted for more 

complex assets than those usually maintained through run to failure strategy. 

The basic principle of a PM system is that it involves predetermined 

maintenance tasks that are derived from machine or equipment functionalities 

and component lifetimes. Accordingly, tasks are planned to change components 

before they fail and are scheduled during machine stoppages or shutdowns14.  

• Condition Based Maintenance (CBM): it is a maintenance strategy that 

monitors the actual condition of an asset to decide what maintenance needs to 

be done. Based on the concept of Remaining Useful Life (RUL), CBM dictates 

that maintenance can only be performed when certain indicators show signs of 

decreasing performance or upcoming failure. Checking a machine for these 

indicators may include non-invasive measurements, visual inspection, 

performance data, and scheduled tests. Condition data can then be gathered at 

certain intervals, or continuously (as it is done when a machine has internal 
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sensors). CBM can be applied to mission-critical and non-mission-critical 

assets23. 

• Predictive Maintenance (PdM): by using knowledge about degradation 

mechanisms, extends the degradation propagation into the future to project 

system failures. This approach combines insights coming from the observation 

of experienced degradation with anticipated operating loads in the future to 

predict when the asset will fail and support the maintenance decision-making 

process14. 

Some authors characterize CBM72, 100 and PdM79 as a sub-classification of the 

preventive strategy. Other researchers prefer to regard corrective, preventive, CBM, and PdM 

as distinct classes104, 108, 109, 110. The former approach stresses the moment of intervention 

concerning the failure (before or after the failure), while the latter focuses on the technology 

involved in each strategy and is the one adopted in this work. Table 2.1.1 provides an overview 

of these maintenance strategies, highlighting their characteristics, applicability, and limitations.  

Table 2.1 – Maintenance strategies and their limitations. 

Maintenance strategy Characteristics & applicability Limitations 

Corrective 

Also known as reactive or 

unscheduled, it restores 

functionality of the asset after 

failure, through repairing or 

replacement procedures. Suitable 

for non-safety, non-critical items 

for which maintenance can be 

performed quickly and at a low 

cost104 

Avoided in complex and 

dynamic systems whose 

failures induce costly and 

severe consequences [108] 

such as unscheduled 

operations stops and 

poorly optimized 

maintenance resources109 

Preventive 
 

Age-

dependent110 

The maintenance time is 

determined according to the 

Leaves equipment prone 

to insufficient 
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Maintenance strategy Characteristics & applicability Limitations 

service age of the components. 

This method is applicable for 

components whose service age is 

known110 

maintenance110 or over-

maintenance, since actual 

degradation is not 

known24, 58, 64 

Periodic110 

The interval between two 

maintenances is constant. This 

method is suitable for components 

with small fluctuations in 

degradation rate110 

The risk of failure due to 

an increase in the rate of 

component degradation 

cannot be avoided110, 58, 64 

Sequential110 

The maintenance interval 

decreases step by step. This 

method applies to components 

with significant change 

characteristics of degradation 

rules110 

Prone to a mismatch 

between maintenance 

requirements and 

maintenance operations110 

Failure 

limit110 

The maintenance time is 

determined according to the 

relationship between component 

reliability and failure threshold. 

This method is suitable for 

components with high-reliability 

requirements110 

The threshold is difficult 

to determine110 leading to 

unexpected failures or 

over-maintenance 

Condition-based 

It incorporates status information 

of the asset obtained from 

sensors, early detection of 

failures, and diagnosis of 

different anomalies23, 72. This 

method applies to components 

whose condition parameters can 

be monitored. 

It cannot be applied to 

non-monitorable 

components110, 23. High 

volume and quality data to 

be managed23. 

Predictive 
The maintenance opportunity is 

determined according to the 

It does not prescribe 

maintenance actions to 
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Maintenance strategy Characteristics & applicability Limitations 

predicted component degradation 

trend by calculating the 

remaining useful life (RUL). This 

method applies to components 

whose degradation parameters 

can be monitored110 and failure 

predicted with assertively72 

prevent or mitigate asset 

unavailability135, 136. It 

cannot be applied to non-

monitorable 

components110. Data-

driven RUL models are 

not viable when the 

necessary quantity or 

quality of data is not 

available23 resulting in 

unreliable failure 

prognostics. Models can 

be a black box without 

providing deterministic 

information on their 

behavior23.  

It does not consider 

varying technological 

maturity levels26 and the 

effect of maintenance 

intervention on the risk of 

failure64. It solely focuses 

on the asset itself, 

allowing limited 

consideration of multi-

stakeholders’ scenarios 

and asset’s behavior in its 

ecosystem26, 137. 
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It is important to note that the limitations presented in Table 2.1 do not imply that 

traditional maintenance strategies adoption must be avoided. On the contrary, depending on the 

asset's technological complexity and operation size and requirements, traditional strategies may 

well be the most cost-effective option. These limitations, however, represent opportunities for 

improvement that can be addressed as the objective of PsM implementations. 

Additionally, it is paramount to highlight the differences between PsM and PdM as the 

concepts are often blurred in the literature. Table 2.2 presents the differences in terms of 

objective, method, and outcome while Figure 2.1 showcases the comparison in terms of 

maintenance philosophy outcomes and analytics used. 

Table 2.2 – Traditional maintenance strategies and their limitations. 

Maintenance 
philosophy 

Objective Method & analytics Outcome 

       PdM 

It aims to predict when 

equipment failure 

might occur. The 

primary goal is to 

perform maintenance 

at the most opportune 

time – just before 

failure is likely to 

happen but not so early 

that it's unnecessary23, 

26, 110, 137 

It leverages predictive 

analytics using data 

from various sources 

like equipment sensors, 

operation history, and 

maintenance records. 

Techniques such as 

statistical analysis, 

vibration analysis, 

thermal imaging, and 

oil analysis are 

commonly used23, 26, 110, 

137 

The result is failure 

prediction that can be used 

by the maintainer to make a 

maintenance schedule more 

efficient than routine or 

time-based maintenance, 

minimizing the risk of 

unexpected breakdowns and 

reducing unnecessary 

maintenance activities23, 26, 

110, 137 

        PsM 

It goes a step further 

than predicting 

failures. It not only 

forecasts potential 

It leverages advanced 

analytics, including 

predictive analytics, 

but combines this with 

The outcome is not just a 

prediction of when 

something will fail, but a set 

of recommendations or 
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Maintenance 
philosophy 

Objective Method & analytics Outcome 

issues but also 

prescribes specific 

actions to prevent or 

mitigate them. The 

goal is to not just 

anticipate failures but 

also to optimize 

maintenance 

operations and 

decision-making1, 5, 7, 

15, 16, 17, 48, 54, 55, 56, 61 

prescriptive analytics. 

It uses machine 

learning, optimization 

algorithms, and 

complex system 

models to analyze the 

data and provide 

specific 

recommendations1, 5, 7, 

15, 16, 17, 48, 54, 55, 56, 61, 52 

decisions on what to do 

about it – whether it's 

adjusting operations, 

scheduling maintenance, 

ordering parts, or even 

redesigning components. 

It's a more holistic approach 

that seeks to optimize the 

entire maintenance process 

and improve overall asset 

performance and 

operations1, 5, 7, 15, 16, 17, 48, 54, 

55, 56, 61, 52 
 

 

Figure 2.1 visually differentiates between PdM and PsM across two dimensions: 

analytics and outcome. The x-axis represents the “analytics”, indicating a spectrum from 

predictive analytics to more advanced prescriptive analytics56. The y-axis measures the 

“outcome”, illustrating a progression from simple failure prediction to comprehensive course 

of action prescription. 

Moving rightward along the x-axis, the complexity of analytics increases56, and we 

reach PsM that encompasses the predictive aspect and advances it by answering "When will it 

fail & what can we do about it?"56, 1, 5, 7, 15, 16, 17, 48, 54, 55, 56, 61. It not only anticipates equipment 

failure but also uses complex analytics to prescribe specific actions that can prevent or mitigate 

potential issues1, 5, 7, 15, 16, 17, 48, 54, 55, 56, 61, 52. This leads to a higher level of outcome where the 

actions are not just reactive but optimized for better maintenance operations and decision-

making56. 
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As analytics become more complex, transitioning from predictive to prescriptive, the 

potential benefits of outcomes increase56, especially when dealing with complex systems 

operating in dynamic environments51. This reflects the more holistic approach of PsM7, which 

leverages both predictive and prescriptive analytics to deliver actionable insights, thereby 

enhancing the overall efficacy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 – Differences between PsM and PdM. (Source: this author) 
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2.1.2 ATA Chapter System 

 

The ATA Chapters system, developed by the Air Transport Association (now Airlines 

for America), organizes aircraft systems into numbered chapters and subchapters for easy 

reference and it is widely accepted in the industry161. Each chapter corresponds to a specific 

system, such as “Chapter 22: Auto Flight” for autopilot or “Chapter 33: Lights” for lighting 

systems. This standardized coding streamlines technical information management, aiding 

maintenance personnel and engineers in ensuring consistency and efficiency in aircraft 

maintenance and operations161. This system was used to model the maintenance events in the 

experiments 2 and 3, as seen in Chapter 4.1 and Chapter 4.3.  

An extract of the ATA chapter list is presented in Table 2.3. The whole list is presented 

in Appendix E.   

Table 2.3 – ATA Chapters list. 

ATA Chapter ATA Chapter Description 

ATA 66 FOLDING BLADES/PYLON 

ATA 67 ROTORS AND FLIGHT CONTROLS 

ATA 70 STANDARD PRACTICES - ENGINE 

ATA 71 POWER PLANT 

ATA 72 ENGINE 

ATA 72 
ENGINE - TURBINE/TURBOPROP, DUCTED 

FAN/UNDUCTED FAN 

ATA 72 ENGINE - RECIPROCATING 

ATA 73 ENGINE - FUEL AND CONTROL 

ATA 74 IGNITION 

ATA 75 BLEED AIR 
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ATA Chapter ATA Chapter Description 

ATA 76 ENGINE CONTROLS 

ATA 77 ENGINE INDICATING 

 

2.1.3 Optimization Problem 
 

Optimization problem is the process of selecting the best possible solution (the 

maximum or minimum of an objective function) from a feasible set, under constraints that 

represent limitations or requirements on the decision variables146. The objective function can 

represent cost, time, or another performance measure and its constraints are restrictions 

represented by mathematical equations. Optimization problems can be categorized as: 

1. Linear Programming:  the objective function and constraints are linear. The goal is to 

find the best decision variables that maximize or minimize the objective function while 

satisfying the linear constraints. 

2. Nonlinear Optimization: the objective function and/or constraints are nonlinear. These 

types of problems are more complex and require specialized methods for the solution. 

An example of a nonlinear optimization problem could involve maximizing profit under 

conditions where production costs vary nonlinearly with the volume of goods. 

3. Discrete Optimization: in these problems, some or all the decision variables are 

restricted to discrete values, often integers. This is common in situations like scheduling, 

resource allocation, or routing, where you need to make whole-number decisions (it is 

not possible to assign half-machine to a task). 

4. Multi-objective Optimization: Here, more than one objective needs to be optimized 

simultaneously, such as balancing cost and quality. Since these objectives often conflict, 

the solution typically involves trade-offs and approaches like the weighted sum method 

can be used to handle these. 
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In general, optimization provides a structured way to improve decision-making by 

helping to identify the best possible action given certain conditions and limitations. 

In this research, as will be presented in Chapter 3.2 and mentioned in Chapter 1.1, MILP 

is the class of optimization that has been adopted. It is a hybrid method that combines elements 

of linear programming, discrete optimization, and multi-objective approach in a single 

framework, allowing for a broad range of applications across these optimization types. MILP 

addresses problems where the objective function and constraints are linear, but some variables 

are integer values, making it ideal for problems that involve discrete decisions (binary choices) 

such as whether to take certain actions and how many units to produce or how many resources 

to allocate, enabling complex real-world applications. MILP can also be extended to multi-

objective frameworks, where a weighted sum approach or other techniques can balance 

conflicting objectives, such as cost minimization and availability maximization, within the 

same model. This versatility makes MILP a powerful method for optimizations in contexts that 

need decision-making across a range of criteria and constraints. 

 

2.1.4 Airliner Operations 
 

Airline operations are complex and dynamic, involving the coordination of numerous 

interconnected processes to ensure safety, efficiency, and profitability. Key characteristics 

include high-frequency scheduling, adherence to safety regulations, and the need for flexibility 

in response to unpredictable factors such as weather conditions, air traffic control constraints, 

and maintenance requirements. One of the main challenges is maintaining optimal aircraft 

utilization while minimizing delays and disruptions, which can lead to increased operational 

costs and passenger dissatisfaction. In this context, tail assignment is the process of assigning 

specific aircraft (or “tails”) to scheduled flights over a given planning period147. Tail assignment 

is a critical component of airline operational scheduling, as it must account for each aircraft's 
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maintenance requirements, seating configurations, range limitations, market demands, and 

efficiency. Operational optimization is an important aspect of the Holistic Framework for PsM 

as mentioned in Section 3.2 as it allows us to consider the operational side of the optimization. 

 

2.1.5 Widebody and Narrowbody Aircraft 
	

Narrowbody and widebody aircraft are classifications based on the width of the 

fuselage, which directly impacts seating arrangements and operational use. Narrowbody aircraft 

have a single aisle and typically accommodate between 4 to 6 passengers per row, supporting 

a total capacity of 100 to 240 passengers. The fuselage width generally ranges from 3 to 4 

meters. These aircraft are most used for short to medium-haul flights, such as domestic or 

regional routes, and include models like the Airbus A320 family and Boeing 737 series. 

In contrast, widebody aircraft feature a dual-aisle configuration and can seat 7 to 10 

passengers per row, allowing for a larger total capacity of 200 to over 850 passengers. Their 

fuselages are wider, typically between 5 to 6 meters, and they are optimized for long-haul and 

international flights due to their extended range and fuel capacity. Examples include the Boeing 

787 Dreamliner, Airbus A350, and the Airbus A380. Table 2.4 compares the aircraft. 

Table 2.4 – Narrowbody and widebody features. 

Feature Narrowbody Widebody 

Aisles Single Dual 

Seating Capacity 100-240 250-850 

Fuselage Width 3-4 meters 5-6 meters 

Range Short to medium-haul Long-haul 
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2.1.6 Public Health Operations 

 

Public hospital operations, especially in emergencies, face significant challenges in 

managing high patient volumes, limited resources, and strict timing demands164. During peak 

times or crises, such as a pandemic, hospitals must treat an overwhelming number of inpatients 

with diverse and critical health needs, all while dealing with constraints on available beds, 

intensive care units (ICUs), ventilators, and medical staff 164. This demand requires hospitals to 

efficiently prioritize care, allocate scarce resources, and minimize patient wait times to improve 

survival rates. Emergency operations in public hospitals, therefore, rely heavily on effective 

resource management and real-time adjustments to accommodate the inflow of critical cases164. 

Drawing a parallel with airline operations165, 166, we can view each patient in the hospital 

as an aircraft in an airline fleet, each requiring tailored treatment and care. In this analogy, 

hospitals resemble (MRO) hangars, where resources are organized to maintain operational 

readiness. Doctors and nurses operate as technicians, providing the care and expertise needed 

to “restore” the patient to health, much like technicians ensuring an aircraft’s airworthiness. 

Key resources like ventilators and ICU beds parallel Ground Support Equipment (GSE) and 

hangar slots in MRO facilities, are critical for keeping aircraft (patients) safely “grounded” until 

they are fit to return to operation. 

In both settings, maximizing asset availability and minimizing downtime—whether a 

patient’s recovery time or an aircraft’s turnaround—is crucial to maintaining an effective, 

responsive operation. This parallel highlight the extensibility concept of the Holistic 

Framework for Prescriptive Maintenance presented in detail in Chapter 3. Table 2.5 summarizes 

this parallelism. 
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Table 2.5 – Parallel between health and aeronautics transportation. 

Asset/attribute Health Aeronautics transportation 

Asset Patient Aircraft 

Station Hospital MRO hangar 

Tools Ventilators and ICUs GSE 

Personnel Doctors and nurses Technicians 

Station vacancies Beds Slots 

 

2.1.7 Mean Time Between Unscheduled Removal (MTBUR) 
 

The Mean Time Between Unscheduled Removal (MTBUR) is an indicator used in 

reliability studies and represents the average time, often measured in operational hours, between 

unplanned removals of components due to failure. It is calculated by dividing the operating 

time by the number of unscheduled removals. It can be calculated for a single component, 

systems, or systems of systems depending on the operating times and removals considered.  

As presented in Chapter 4 the MTBUR will be used in experiments 1 and 3 to estimate 

degradation and calculate the probability of failure of each system in function of flight hours 

flown.  

 

2.1.8 Prognostics and Health Management (PHM)  
 

It is a multidisciplinary field aimed at predicting the future health of a system while 

managing its maintenance needs to optimize reliability, safety, and cost efficiency158. PHM 

integrates advanced diagnostics and prognostics tools to monitor systems in real-time and 

estimate the Remaining Useful Life (RUL) of components or systems158, 159, 160. By leveraging 

data from sensors, operational history, and environmental conditions, PHM systems provide 
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insights into potential failures before they occur, allowing for proactive maintenance 

decisions159, 160. 

At its core, PHM involves two main components: diagnostics and prognostics158, 159. 

Diagnostics identifies the current health state of a system by detecting and isolating faults, while 

prognostics predicts the future state and health of the system based on current conditions and 

degradation trends. These predictions are made using a combination of statistical models, 

machine learning algorithms, and physics-based simulations, depending on the nature of the 

system and the data available158, 159.  

The value of PHM lies in its ability to transition from reactive to predictive maintenance, 

minimizing unscheduled downtime and reducing operational risks. By enabling CBM, PdM 

and PsM, PHM helps organizations balance performance and cost by replacing components 

only when needed rather than on a fixed schedule160. This approach is particularly beneficial in 

complex sustems’ industries such as aerospace, automotive, and manufacturing, where system 

failures can have significant safety and financial repercussions. Ultimately, PHM enhances 

system availability, extends asset lifecycles, and fosters resource allocation optimization, 

making it an essential component of PsM. 

 

2.1.9 Maintenance Levels  
 

To comprehensively assess and model the maintenance capabilities within the 

framework, it is essential to understand the different levels of maintenance performed across 

the various airliner locations. The maintenance capability model considers three primary levels 

of maintenance: depot, intermediate, and organizational as follows: 

 
• Depot maintenance: it refers to the highest level of maintenance, typically 

performed at specialized facilities with extensive capabilities. This type of 
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maintenance, also referred to as C-check in commercial aviation, involves major 

repairs, overhauls, and extensive inspections that require specialized equipment 

and highly skilled personnel. Depot maintenance is usually planned and 

scheduled well in advance and is conducted less frequently compared to other 

maintenance levels. Examples include complete engine overhauls, structural 

repairs, and significant upgrades or modifications. These facilities often support 

multiple operational units and provide capabilities that are beyond the scope of 

organizational and intermediate maintenance levels172. 

• Intermediate maintenance: it is the middle level of maintenance, performed at a 

maintenance facility or unit that is typically closer to the operational 

environment than a depot but more specialized than the organizational level. 

This level, called A-check in commercial aviation, includes tasks such as 

troubleshooting, parts replacement, minor repairs, calibrations, and scheduled 

inspections that cannot be accomplished at the organizational level but do not 

require the extensive resources of depot maintenance. Intermediate maintenance 

aims to support operational units by providing timely repairs and ensuring that 

equipment remains in good working condition, reducing the need for depot-level 

interventions172. 

• Organizational maintenance: It is the lowest level of maintenance, performed by 

the operational units using the equipment. This level includes routine, day-to-

day maintenance tasks such as inspections, lubrication, adjustments, 

troubleshooting, and repairs limited to remove and replace activities. 

Organizational maintenance is designed to be quick and efficient, allowing for 

immediate corrections to minor issues172. 
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2.2 Literature Review 
 
2.2.1 Introduction 
 
 

Typically described as the “most advanced” or the “most mature” maintenance concept, 

Prescriptive Maintenance (PsM) consists of asset data acquisition, prediction of failure 

capability, and prescription of actions based on the data acquired and the prediction of failure, 

all this taking place in an integrated and automatic or semi-automatic workflow. PsM is 

increasingly being explored as a means of improving production and operational efficiency, by 

maximizing asset availability and minimizing maintenance costs. Enabled by a wide variety of 

prescriptive analysis techniques and leveraged by the Internet of Things (IoT), the interest in 

the PsM has greatly increased in the past five years across both academia and industry, 

accompanied by a growth in the number of related publications. It is missing from the literature, 

however, a consolidated, consistent, and systematic literature review on what the PsM is, and 

how the concept is evolving to meet the needs of the many use cases to which it is being tied. 

This lack of consistency has led to a wide variety of characterizations, definitions, and processes 

that lead to a risk of diluting the concept and missing the benefits that the PsM was originally 

devised to deliver. This literature review consolidates concepts presented in the research 

published until January 2024 to identify a common understanding of PsM and ensure that the 

research effort addressed by this study is based on solid foundations.   

 

2.2.2 Methodology 
 

The research presented follows a systematic approach, as illustrated in Figure 2.2, 

ensuring a comprehensive and repeatable process. The review focused on identifying relevant 

works related to prescriptive maintenance (PsM) through a structured search conducted on the 
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Google Scholar platform. The search, performed between August 2022 and January 2024 using 

the query "Prescriptive Maintenance," initially yielded 983 publications. After applying the 

relevance criteria which was based on the paper directly address PsM frameworks or 

maintenance and operations optimizations, 56 papers directly related to PsM were selected for 

in-depth analysis. Additionally, seminal works were identified using citation-based analysis 

methods, as outlined in3, further refining the review by pinpointing contributions that have 

shaped the evolution of PsM research. The results of this literature review not only provide a 

foundation for understanding the current state of PsM but also guide the subsequent analysis 

and experiments detailed in this study. 
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Figure 2.2 – Literature review methodology diagram. 

Source: Jones (2020). 

The seminal works, as mentioned at the beginning of this chapter, have been identified 

using the methodology presented by3. It consists of evaluating the “peaks” in terms of deviation 

from a 5-year median of the yearly citations’ sums. The result is the spectrogram of Figure 2.3.  
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Figura 2.3 – Identification of seminal work between 1975 and January 2024 PsM-related 

publications (this author). 

 
 
2.2.3 The Origin of PsM 
 

It is only in 2014, that Olaf Sauer mentioned in his paper the work of Alexandre Linden 

who in 2013 described PsM as maintenance anticipation and action proposition through 

decision support systems and decision automation systems enabled by sensing capabilities, 

machine condition monitoring and diagnostic analysis, drastically differentiating PsM from 

scheduled maintenance14, 15.  

One year later, Setrag Khoshafian and Carolyn Rostetter expanded the concepts 

presented by Sauer and Linden16.  In their work, the authors described PsM as “the sum of Total 

Productive Maintenance”, “descriptive, preventive, and predictive analytics of equipment data 

for maintenance”, and “automated end-to-end process”. Calling this flow the “Process of 

Everything” the authors mentioned that PsM provides the “orchestration of end-to-end dynamic 

cases involving people, applications, trading partners and things (including robots) as 

participants”.  Khoshafian and Rostetter saw a world where machines predict potential failures 

and autonomously trigger maintenance — all with minimal human intervention. The machines 

(or things) that are covered by the “Process of Everything” become self-learning and over time 
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can “take care of themselves,” reducing the need for rework and manual efforts that are typical 

of traditional maintenance.  

Thus, PsM is adaptive: it continuously learns from the events or the behavior of the 

device or its components, leveraging the business by continuous real-time analysis to provide 

actionable maintenance decisions. 

These concepts were reinforced two years later by Ansari, Glawar, and Sihn who 

introduced the notion of knowledge-based maintenance (KBM) to describe PsM17. In this work, 

the authors mentioned that the digital transformation brought by the Cyber-Physical Production 

Systems (CPPS) leveraged the importance of data for production and maintenance processes 

alike through the deployment of decision support systems to booster machine availability and 

production process stability. The authors suggested a framework model that supports the 

implementation of a prescriptive maintenance strategy, facilitates the integration of data and 

the deployment of a technique based on a Dynamic Bayesian Network (DBN) for predicting 

future events17.  Table 2.6 summarizes the PsM core concepts discussed in this chapter5, 15, 16. 

Table 2.6 – PsM core concepts. 

Concept Description Reference 

Holistic 

It is the sum of diagnostics, preventive and predictive 

maintenance orchestrating end-to-end dynamic maintenance 

cases involving people, applications, trading partners, and 

things as participants.  

16, 17 

Actions 

prescription 

PsM automatically creates a maintenance case or prescribes 

tasks that can be assigned to things or people. 
15, 16, 17 

Self-

learning & 

Adaptive 

With PsM machines become self-learning and over time can 

predict failures and “take care of themselves”. By self-learning, 

PsM adapts to the events or the behavior of assets achieving 

continuous real-time analysis to provide actionable decisions. 

15, 16, 17 

Automated 
End-to-end processes enabled by IoT with machines predicting 

potential failures and autonomously triggering maintenance.  
15, 16, 17 
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Concept Description Reference 

Optimized Optimized maintenance is provided 15, 16, 17 

KBM 

Knowledge-based maintenance: structured and unstructured 

knowledge as well as data collected through sensors from 

machines, people, and processes are used as a base for failure 

prediction and maintenance recommendation 

15, 17 

 
Table 2.7 shows the identified themes and their description, Table 2.8 presents the 

themes and their respective sub-themes and Figure 4.1  (this author) showcases PsM defining 

characteristics, enablers, and desired outputs. 

Each theme presents a key concept identified across the literature as part of the PsM 

characterization. Sub-themes 1 to 6 answer “What PsM is”, while sub-themes 7 to 12 list PsM 

enablers, sub-themes 13 to 18 present PsM outcomes and expected results, and finally sub-

themes 19 to 25 form the basis for future directions and gaps in research. 

The next chapter explores each theme and relative sub-themes mapped to related papers 

according to the codes identified in the corpus review. 

Table 2.7 – Theoretical framework themes. 

Number Theme Description 

1 
PsM definition 

It answers to the question: “What is PsM?”. It lists PsM’s 
building blocks and main constitutive concepts.   

2 
PsM enablers 

It presents enablers in terms of processes, technologies, 
methods, and best practices that make PsM implementation 
possible.  

3 
PsM outputs 

PsM’s results are obtained from actual implementations, 
business cases, or expected by conceptual frameworks and 
theories. 

4 
Future work 

Recommended open questions and research possibilities 
according to the authors 
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Table 2.8 – Theoretical framework themes and sub-themes. 

Theme number Theme Sub-theme number Sub-theme 

1 
PsM 

definition 

1 The most mature maintenance process 

2 Knowledge-based  

3 Predictive 

4 Holistic 

5 Self-learning 

6 Adaptive 

2 
PsM 

enablers 

7 Prescriptive analytics 

8 Internet of things 

9 Failure prognosis systems 

10 Data analysis 

11 Decision support system 

12 Ontology 

3 
PsM 

outputs 

13 The course of action prescription 

14 
Life cycle cost minimization and asset 
availability maximization. 

15 Optimized maintenance 

16 Automated maintenance workflow 

17 
Maintenance recommendation 
continuous improvement 

18 
Integration between operation and 
maintenance 

4 
Future 
work 

19 
Prescriptive Analytics methodology 
considering all resources 

20 Extensibility/adaptability/scalability 

21 
Prototype development/real-case 
scenario 

22 Process integration 

23 
Algorithm feedback & maintenance 
imperfection 

24 Improve prediction quality 

25 Improve data availability 

25 
Appropriate objective function 
development 

 

Figure 2.4 presents a clear progression from the definitions of maintenance strategies to 

their practical enablers, and finally, the desired outputs. It starts with foundational 

characteristics, such as predictive and knowledge-based maintenance, advancing through to 

holistic, adaptive, and self-learning approaches. These characteristics are powered by enablers 



   54 
 
 

like prescriptive analytics, IoT, and decision support systems, which leverage data to provide 

the desired outputs: actionable prescriptions, minimized costs, maximized availability, 

optimized routines, automated workflows, continuous improvement, and seamless integration 

of operations and maintenance. 

 

 

Figure 2.4 – PsM definitions, enablers, and outputs. (Source: this author) 

 

2.2.4 Research Gap Identification 
 

This chapter is dedicated to analyzing, within the corpus, what has been done and proposed 

in terms of the research question addressed in this thesis, as seen in Section 1.2 the following 

also proposed in Table 2.9: 

 

Prescriptive 
analytics

Failure prognosis 
system

Data analysis

IoT

Decision support 
system
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The most mature 
maintenance 
strategy

Knowledge-based 

Predictive 

Holistic 

Adaptive

Self-learning

Course of action 
prescription

Life cycle cost 
minimization & 
asset availability 
maximization 

Optimized 
maintenance 

Automated 
maintenance 
workflow

Maintenance 
recommendation 
continuous 
improvement

Integration 
between operation 
and maintenance

Definitions Enablers Outputs 
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Table 2.9 – Research question. 

How maintenance and operations efficiency can be improved through an 
optimization framework for prescriptive maintenance that: 

considers 
1. Maintenance resources involved namely labor, tools, and infrastructure? 

2. Maintenance imperfections? 

is 
3. Extensible to different assets with different technological maturities? 

4. Adaptable to different industries, namely aerospace, and health? 

provides 5. Optimized maintenance course of action? 

 

Agent-based simulation that considers aspects of maintenance, operations, and fleet 

different technological maturity to provide maintenance optimization based on asset real-time 

condition and health prognosis have been implemented54, 56. However, resource-wise, the author 

considers only human line maintenance resources, while leaving for future work an algorithm 

capable of extending the optimization approach to consider prognostics' low accuracy, 

evaluation of maintenance schedule robustness over unexpected events such as bad weather, 

the scheduling of different tasks that might compete for the same resources, ground support 

equipment, shop repair resources and material logistics as maintenance process constraints.  In 

subsequent work, the simulation to cover maintenance imperfections and uncertainties in 

prognostics has been developed56, however, the model did not cover resources other than labor 

as in his previous work56. Maintenance imperfections have been modeled proposing a 

methodology to consider their effects on maintenance scheduling using simulation43, however, 

this study leaves out resources’ constraints and assets' different technological maturities from 

the equation. Similarly, other approaches define maintenance imperfection and model how it 

affects scheduling but do not consider resource stakeholders or the option of having human-

cobot interaction66, 67. The prescriptive methodologies that provide the base for the hypothesis 

are agent-based simulation67, 66, machine learning, and Markov Decision Process67.     
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As prescriptive analytics methodology to optimally schedule maintenance, authors have 

used mixed integer programming (linear and nonlinear)7, 91, 57, 49, 92, 62, 94, 95, 82, 97, 98, 64, 81, Markov 

Decision Process20, 63, 67, machine learning8, 23, 92, 22, 67, 64, 65, Monte-Carlo simulation43, 92, 62, 50, 

Heuristics60, 79, 91, 92, 95, 50, 96, 30, discrete-event simulation54, 56, 79, agent-based simulation54, 56, 79, 

66, 67 and ontology5, 8, 9, 17, 30, 60, 79, however, no work has considered resource constraints other 

than human labor or human-robot collaboration.  

Regarding the theme of human-cobots collaboration, the issue is mentioned as future work 

or trend5, 17, 22, 100, 101, 102 and addressed by77, 89, 99 but not as a constraint in the PsM model. 

Specifically, Deng et al.77 proposed an ontological framework to map out and describe how 

knowledge is shared and increases among humans and cobots, while Ansari89, 99 models the 

interaction and how it affects a production line supported by cyber-physical production system 

(CPPS), however, in both cases there is no integration between the model of the system 

proposed, all maintenance resources and maintenance imperfections.  

Regarding the extensibility between industries or different systems, authors refer to it 

as future work5, 7, 22, 24, 30, 35, 48, 49, 51, 52, 54, 58, 60, 62, 64, 65, 81 and as a crucial step to assess the actual 

scalability and applicability of PsM concepts, however, it is an issue that is not addressed. Other 

studies propose methodologies based on simulation30 and machine learning65 however do not 

provide experimentation to evaluate the proposals.  

Table 2.10 summarizes this author's approach concerning the research question. It can 

be noted that although the focus has been maintenance optimization, no work considers 

maintenance imperfection, different types of labor resources (airframe, avionics, and 

powerplant), different assets of different technological maturities, different support capabilities, 

failures per system, in the same work. Similarly, no work effectively assesses and demonstrates 

how the prescription algorithm could cover different industries, demonstrating its scalability 

and adaptability to different scenarios. This is where this work is positioned. 
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Table 2.10 – PsM works related to the research gaps. 
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Meissner56 
          Cost  

Ansari et al.[5 
          Framework 

Choubey7 
          Framework 

Mattioli et al.8 
          Framework 

Glawar et al.9 
          Framework 

Ansari et al.17 
          Framework 

Silvestri100 
          Concept 

Cisterna101 
          Concept 

Ameri102 
          Concept 

Gao et al.20 
          Cost  

Kovacs23 
          Cost 

Strack30 
          Framework 

Strack39 
          Framework 

Koops43 
          Cost 

Padovano60 
          Framework 

Deng et al.77 
          Framework 

Garcia79 
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Ansari89 
          Framework 

Ansari99 
          Framework 

Aramon91 
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Cho et al.57 
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Consilvio49 
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Consilvio92 
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Dias et al.62 
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          Cost 

Nakousi82 
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Nejad66 
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Robert96 
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3 Materials and Methods 
3.1 Materials 
 

This chapter details the hardware and software resources utilized in the development 

and implementation of this research. The selection of hardware aimed to meet the computational 

demands essential to the study, while the software tools were chosen to enable efficient analysis, 

modeling, and validation of results. Together, these resources allowed to carry out experiments, 

managing data, and achieving the objectives of this research. Each component is discussed in 

detail in the following chapters. 

 

3.1.1 Hardware 
 

The hardware utilized for this research was a 2023 MacBook Pro, equipped with 

the Apple M2 Pro chip and 16 GB of memory. It was noted that this set up generally could 

handle experiments efficiently, although processing time usually increased up to 4 hours as for 

more complex experiments – especially for the health case study.    

Table 3.1 – Hardware characteristics. 

 

 

 

 

 
3.1.2 Software 
 

The software environment for this research consisted of macOS Sonoma 14.5 as the 

operating system and Microsoft Excel (version 16.9) used for preliminary data organization and 

results analysis. For complex modeling and coding tasks, PyCharm 2023.2.3 served as the 

Characteristics Description 

Chip Apple M2 Pro 

Ram memory 16 GB 

Hard disck memory 500 GB 
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primary Integrated Development Environment (IDE), enabling development in Python 3.12.0. 

Core computations and optimization tasks were executed using the Gurobi Optimizer (version 

11.0.3), an industry-standard tool for solving linear optimization problems. Key Python 

libraries, included pandas for data manipulation, gurobipy for interfacing with Gurobi, 

and matplotlib for data visualization. Table 3.2 summarizes the software used.  

Table 3.2 – Software used and their attributes. 

 

 

 

 

 

 

 

 

 

 

3.2 Methods 
 

This chapter is dedicated to the heart of this research, presenting the development and 

methods, that resulted in the Holistic Optimization Framework for PsM. The work is linked to 

the Smart Prescriptive Maintenance Framework (SPMF), an implementation approach for 

PsM51 first introduced by Marques et al. in 2019 and later reproposed55 by this author in 2021. 

This framework places a strong emphasis on holistic optimization, integrating operation, 

maintenance, and maintenance resources into a unified strategy. It goes beyond the aerospace 

industry, associating diverse assets such as aircraft and human health, for a cross-industry PsM 

paradigm shift. 

Attributes Description 

Environment macOS Sonoma 14.5 

Data pre/post analysis Microsoft Excel 16.9 

Modeling & coding PyCharm 2023.2.3 

Development environment Python 3.12.0 

Optimization solver Gurobi Optimizer 11.0.3 

Pandas Python library for data manipulation 

Gurobipy Python library to use gurobi solver in python 

Numpy Python library for Monte Carlo simultion 

Time Python library to track processing time 
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3.2.1 Holistic Optimization Framework for PsM 

 

The Holistic Optimization Framework for PsM, shown in Figure 3.1 is designed to 

address the challenges of maintaining complex systems in dynamic operational environments. 

As illustrated in the flowchart, the framework integrates various elements that influence 

maintenance and operation decisions, including the asset’s characteristics, external factors and 

operation disruptions (both scheduled and unscheduled). The framework considers 

maintenance resources such as stations, equipment, personnel, and materials, alongside other 

constraints like maintenance uncertainties and time. By leveraging a prescriptive algorithm 

aimed at maximizing performance and minimizing costs, this framework processes these inputs 

and constraints to recommend optimal maintenance actions and operation recommendation. 

This holistic approach ensures that all relevant factors are accounted for, leading to more 

efficient and effective operation and maintenance that can be scaled across different industries. 

 

 Figure 3.1 – Holistic Optimization Framework for PsM. (Source: this author) 

The asset can encompass a single aircraft, a fleet, a set of production machines in the 

manufacturing industry, a fleet of ships, an oil extraction platform, a fleet of urban air mobility 

vehicles, a wind farm, or humans and its characteristic influences how the operation occurs. 
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Operations can be disrupted for various reasons, including the wear and tear or degradation of 

systems that cause interruptions or reduced efficiency. When these disruptions happen 

unexpectedly, they result in unscheduled events, leading to increased operational and 

maintenance costs due to the unplanned nature of the event and the necessary use of resources 

that must be deployed to continue operation or mitigate the effects of the disruption. This 

scenario pertains to unscheduled maintenance. Examples of unscheduled events include sudden 

failures in aircraft or machines and health emergencies like pandemics, heart attacks, cerebral 

vascular accidents and many others.  

To mitigate costly operational stoppages, complex assets are often maintained 

proactively to prevent sudden failures. In this context, assets are removed from operation in a 

planned manner, potentially during periods of lower demand or less intensive operation, for 

inspection or preventive activities. This strategy is more efficient than reactive maintenance but 

can lead to over-maintenance as it does not consider the asset's actual health state. In humans, 

this can be compared to elective surgeries and preventive health check-ups. 

A more refined subset of scheduled maintenance is PdM. For continuously monitored 

assets, it is possible not only to assess the current health state but also to predict future states. 

This allows maintenance to be planned based on the predicted state, ensuring it is performed 

when necessary. Although predictive maintenance does not provide course of action, it is the 

optimal strategy in comparison to the unscheduled and the more general scheduled strategy. 

Predictive strategies are still evolving as not all complex systems have this capability. Human 

health systems currently lack this capability, but the rapid evolution of wearables and other 

sensing devices could lead to significant health benefits by enabling state prognostics for 

humans, thereby optimizing healthcare system support. These operation disruptors are events 

that need to be managed to resume operations as quickly as possible at the required quality and 

costs. They provide information on when the event should occur, its estimated duration, and 
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scope while maintenance resources provide the state and quantity of available personnel, 

physical space, material and equipment. 

Maintenance resources include physical spaces (hangars, hospitals, repair shops, plants, 

etc.), equipment and tools, spare parts, and personnel such as technicians, engineers, nurses, 

doctors and all human capital involved in maintenance. These resources are finite, making their 

optimization critical for sustainable operations, especially in highly dynamic and demanding 

environments. 

Additional constraints include maintenance uncertainties, as maintenance may not 

always restore the asset to a "good as new" state, but rather to a condition somewhere between 

"new" and "old"43. Time is also a critical constraint, as it dictates the pace of operations and 

maintenance. 

External events, which are often beyond the system's control, can be human-made (wars, 

strikes, labor shortages) or natural (floods, heavy rains, seismic activities, volcanic ash clouds). 

They directly affect the operation and can cause unscheduled events creating great impacts to 

the system performance and maintenance activities. 

The prescriptive algorithm considers constraints defined by the asset, such as its 

reliability. For human assets, this includes genetic information, innate resistance to infections, 

responsiveness to specific treatments or survival probability. The operation attributes provide 

asset’s performance requirements, indicating what is expected from the asset in terms of quality 

of the product, service level and costs.  

Through these constraints and requirement, the algorithm provides the best 

recommendations for deploying the assets and support resources to holistically enhance 

operational performance and maintenance implementation.  

To provide a clear understanding of the interconnected components within the Holistic 

Optimization Framework for PsM, Table 3.3 outlines the key elements and their correlations. 
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This Table illustrates how each element influences and constrains the others, highlighting the 

dynamic interactions between assets, their operations, external factors, disruptions, 

maintenance resources, and the prescriptive algorithm.  

Table 3.3 – Holistic and scalable smart optimization framework elements and their 

correlations. 

Element Action Element Description 

Asset 

Influences Operation 
Asset’s characteristics determines the 
operations’ characteristics 

Influences 
Operation 
disruptions 

Asset’s reliability and health directly 
determines possible operations’ 
disruptions such as stoppage for 
maintenance 

Constraints 
Prescriptive 
algorithm 

Assets characteristics such as reliability 
and performance capability define 
optimization restrictions 

Operation 

Influences 
Operation 
disruptions 

Variability, level and intensity of 
operation influences when disruptions 
happen  

Demands 
Prescriptive 
algorithm 

The specific of operation determines what 
is expected from the optimization such as 
availability maximization, cost 
minimization or better performance and 
quality 

External 
factors 

Influences Operation 
Uncontrollable environmental or human 
caused events may affect operation 

Influences 
Operation 
disruptions 

Uncontrollable environmental or human 
caused events may cause disruptions such 
as maintenance event 

Operation 
disruptions 

Determine 
events to 

Prescriptive 
algorithm 

Disruptions in operation are the events to 
be managed by the prescriptive algorithm 
to fulfil operation demands. They can be 
unscheduled or scheduled. Predicted 
events are considered a sub-category of 
scheduled events 

Maintenanc
e resources 

Constraints 
Prescriptive 
algorithm 

They are finite operation’s support assets, 
such as physical space, machinery, 
equipment, personnel and material that 
are constraints to the prescriptive 
algorithm. They usually need to be 
optimized to ensure efficiency and 
effectiveness  

Other 
constraints 

Constraints 
Prescriptive 
algorithm 

Time and other maintenance uncertainties 
that also generate restrictions to the 
maintenance resources, and in turn, to the 
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Element Action Element Description 

prescriptive algorithm  

Prescriptiv
e algorithm 

Recommends Operation 

The prescriptive algorithm generates 
recommendations to the operation to 
increase holistic operation-maintenance 
performance while pursuing cost 
minimization 

Prescriptiv
e algorithm 

Recommends 
Maintenance 
resources 

The algorithm recommends how to 
deploy maintenance resources optimally 
to leverage holistic performance of the 
system operation-maintenance resources 

 
By considering the relationships between the elements, the PsM algorithm enables 

informed decision-making that enhances maintenance and operation seamlessly.  

To illustrate how the framework can be extended across industries, Figure 3.2 presents 

the association between two very different assets: aircraft and humans. The characteristics of 

these assets are associated based on the framework presented in Figure 3.1. and will be further 

explained through the case studies in next chapters. For humans, operations include life 

activities, while operations for aircraft encompass transportation. Unscheduled events like 

COVID-19 pandemic admissions parallel unscheduled maintenance events for aircraft, such as 

equipment failure. Scheduled events for humans, such as elective procedures, align with 

planned aircraft maintenance checks like A-check and C-check. PdM, a future work area for 

humans, involves anticipating human health issues or aircraft failures through predictive 

analytics. 

Maintenance resources for humans involve hospital ICUs (stations), ventilators 

(equipment), doctors and nurses (personnel), and hospital consumables (material). Similarly, 

aircraft maintenance resources include hangar slots (stations), tool sets (equipment), 

maintenance technicians (personnel), and spare parts units (material). Both domains face 

constraints from maintenance uncertainties and time. For humans, this includes uncertainties in 

medical treatments and time constraints, while for aircraft, it involves maintenance 

imperfections and time limitations. Figure 3.2 illustrates these concepts. 
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 Figure 3.2 – Human and aircraft framework parallel. (Source: this author) 

 

Figure 3.3 introduces the mathematical structure that will further be detailed in next 

chapters. The Figure presents the association between assets, parameters, constraints, and 

objective functions. For both humans and aircraft, the assets (individuals and aircraft) engage 

in operations (human activities and transportation). Unscheduled events include COVID-19 

pandemic admissions for humans and equipment failures for aircraft, while scheduled events 

cover elective medical procedures and planned maintenance checks. Both events are time 

constrained as they must happen up to a certain date in the case of A-check, C-check and 

Human Aircraft 

Human activities Transportation 

Covid-19 pandemic admission Unscheduled maintenance due 
to equipment failure  

Elective procedures A-check & C-check 

Not addressed Failure prediction 

Maintenance hangars slots Hospital ICUs 

Ventilators Tools sets 

Doctors and nurses Maintenance technicians 

Consumables Spare parts units 

Uncertainties in medical 
treatments 

Maintenance imperfections 

Time constraints Time constraints 
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predicted events, while unscheduled maintenance happen, as per definition, in specific dates 

according to unforeseen failures or COVID-19 pandemic spread. 

Key constraints are then highlighted, such as the availability of hospital ICUs, 

ventilators, doctors, and nurses for human patients, and the availability of maintenance slots, 

tools, and technicians for aircraft. Additionally, constraints related to materials, such as 

consumables for humans and spare parts for aircraft, are considered. The framework also 

accounts for maintenance uncertainties, where stochastic methods are applied post-optimization 

for humans to account for medical errors or treatments failures while Mean Time Between 

Unscheduled Removal (MTBUR) are updated to account for degradation accumulation due to 

imperfect maintenance for aircraft. 

Time constraints are crucial, ensuring that patient admissions and aircraft maintenance occur 

promptly to maintain operational viability. The objective function for both domains focuses on 

maximizing the difference between revenue and cost, ensuring that the optimization process 

enhances efficiency and effectiveness. In the case of humans, revenue is directly related to the 

maximization of the probability of saving life with greatest life expectancy while costs are 

correlated to the daily hospitalization expenditures. For aircraft fleet, revenue is related to the 

maximization of number of flights and cost to the maintenance cost. Detailed mathematical 

models are presented in the next chapters. 
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 Figure 3.3 – Framework mathematical structure. (Source: this author) 

 
As this chapter concludes, the framework's adaptability has been exemplified by 

drawing parallels between the maintenance of complex systems like aircraft and the health care 

provided to humans. Moving forward, next chapter will present the core mathematical model 

of the framework and the description of the prescriptive algorithm to outline the elements that 

are context sensitive that need adaptation according to the context, and the elements that are 

structural, that is, do not vary according or need only minor adaptations to the context. 

Human Aircraft 

Human activities 

A-check & C-check 

Not addressed Failure prediction 

Number of aircraft in 
maintenance cannot exceed 
available slots 

Number of patients 
admitted cannot exceed 

available ICUs 

Consumables needed cannot 
exceed consumables 

available 

Spares needed cannot exceed 
material available  

Uncertainties in treatments 
are considered in stochastic 

way after optimization 

Mean time between unscheduled 
removals (MTBUR) are updated 
after maintenance  

Patients admissions must 
occur as soon as possible  

Maintenance must happen in a 
timely manner so airworthiness is 
not undermined and operation 
viable  

Transportation 

Elective procedures 

Covid-19 pandemic admission Unscheduled maintenance due 
to equipment failure  

Number of aircraft in 
maintenance cannot exceed 
available tools set  

Number of aircraft in 
maintenance cannot exceed 
available technicians  

Number of patients 
admitted cannot exceed 

available ICUs 

Number of patients 
admitted cannot exceed 

available ventilators 
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3.2.2 Prescriptive Algorithm 

 

This chapter is dedicated to describing the prescriptive algorithm mathematically and 

conceptually presenting its elements and their characteristics.  

Figure 3.4 presents this overview and highlights the prescriptive algorithm flow 

designed towards the optimization and decision-making processes across various industries, 

including air transport, health, oil and gas, energy, and transportation. The algorithm integrates 

context-sensitive elements and structural elements. The former elements need to be modeled 

according to the business and operational contexts the assets operate in, while the latter need 

little or no adaptation across different operations. 

1. Real-World Context and Assets: this element represents the diverse domains, such 

as air transport, healthcare, oil & gas infrastructure operations and other industry-specific assets 

that can be addressed by the algorithm. 

2. Data Input Pre-Processing: the algorithm begins with cleaning and organizing 

relevant data collected about the assets. Mathematical and statistical simulations, such as Monte 

Carlo simulation, may be needed to describe current operation. This step ensures the reliability 

of input data for downstream processes. 

3. Asset and Operations Characteristics: the cleaned data is analyzed to define asset’s 

maintenance requirements, operational requirements, existing support resources, and asset-

specific characteristics such as Mean Time Between Failure (MTBF), MTBUR, RUL and 

failure modes. 

4. Decision Variables: decision variables X, Y, and O indicate the scheduling or 

occurrence of maintenance (scheduled vs. unscheduled) and operations. X = 1 or Y = 1 signifies 

the occurrence of a maintenance, whereas O = 1 denotes operational activities. Variables X may 

be in function of triggers such as time, operational cycles and predicted degradation, while Y 
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is related to unforeseen events and failures thus linked to statistic behavior. Variables may be a 

function of time, location and asset. 

Unscheduled interventions are not programmed, as the name suggests. They can be 

caused by incidents or accidents due to external factors or unforeseen asset failures.  

Scheduled interventions are the ones that are programmed to prevent sudden failures. 

Predictive maintenance tasks end up being scheduled tasks as well, with the difference that the 

interval is based on the actual degradation of the asset instead of a fixed interval. 

Table 3.4 specifically lists these decision variables. 

Table 3.4 – Example of decision variables. 

Variable State Type 

!!"# • Equal to 1 if programmed activity is scheduled for asset i 
on day d and hangar h 

• 0 otherwise  

Binary 

(!"# • Equal to 1 if unscheduled activity happens for asset i on 
day d and hangar h 

• 0 otherwise 

Binary 

)!"#	
• Equal to 1 if operation occurs for asset i on day d and 

hangar h 
• 0 otherwise 

Binary 

 

5. Constraint Formulation: 

• Material Constraint: ensures that both scheduled and unscheduled maintenance do not 

exceed the available material resources. In the example shown below (equation 3.1), for 

each day d, asset i and event m, materials quantity used cannot be larger than the quantity 

available at station H at each day d. In this case, materials used for scheduled and 

unscheduled maintenance task are the same. 

***(!#$% +	-#$%)
$∈'

∗ 012#$( ≤ 012)$
#∈*%∈)

 

 

(3.1) 



   71 
 
 

• Tool/GSE Constraint: limits maintenance activities based on the availability of required 

tools or GSE. In the example below (equation 3.2), for each day d, asset i and event m, GSE 

quantity used cannot be larger than the quantity available at station H at each day d.  

***(!#$ +	-#$)
$∈'

∗ 345#$( ≤ 345)$
#∈*%∈)

 

 

• Labor Constraint: ensures tasks are aligned with the available full-time equivalents (FTEs) 

for scheduled and unscheduled tasks. It might be broken down in terms of technician’s skills 

such as avionics, powerplant, airframe, engineering, doctors, nurses and so on. The example 

shown in equation 3.3 establishes that for each day d, asset i and event m, the FTE quantity 

used cannot be larger than the quantity available at station H at each day d. 

***(!#$% +	-#$%)
$∈'

∗ 625#$( ≤ 625)$
#∈*%∈)

 

 

• Station Constraint: it limits the amount of assets that undergoes maintenance to the 

stations’ capacity and unit of space. It can be expressed in area, slots, intensive care units 

(ICUs), shops and any physical space where maintenance needs to take place. The limitation 

imposed by the number of available stations is described in equation 3.4. For any given day 

d, the number of assets slated to receive maintenance must not exceed the physical space 

available, denoted by Hd. This stipulation enforces a cap on the maximum number of assets 

undergoing maintenance at any one time, ensuring that the physical space available is not 

exceeded.    

∑ ∑ ∑ (!!"# +	(!"#)"∈% ≤ .!∈&#∈' d 
 

(3.2) 

(3.3) 

(3.4) 
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6. Revenue and Cost Equations: this element expresses that maintenance and 

operation are mutually exclusive. If an asset is operating, maintenance cannot happen and vice 

versa. 

7. Revenue and Cost Equations: 

• The Revenue Equation: evaluates the monetary gain derived from service or product 

delivery over a period. It is a context-dependent element since depending on the business 

service or product are provided. 

• The Cost Equation: accounts for the costs associated with providing services, considering 

different scenarios such as quality delivery, delays or not delivery of a product or service. 

As revenue, it is a context-dependent equation since delay related cost, for example, are not 

always applicable. 

8. Objective Function: the optimization goal is defined as the maximization of profit, 

calculated as revenue minus cost, as also shown in equation 3.5. This function ensures that 

operations achieve the highest efficiency and profitability. This equation defines the 

prescriptive approach since it ensures optimization is holistic, considering both revenue, which 

linked to operation, and cost, which is attached to maintenance and support.  

 
789:;<=>:6?@;<=A@ = 0C$(D:>:@?: − FAG<) 

 

9. Results Post-Processing: the optimized results are analyzed to provide actionable 

insights, such as strategies to increase system efficiency or prescribe a course of action. 

Simulations, such as Monte Carlo simulation, may also be conducted to validate and visualize 

the recommendations depending on the context. 

The algorithm offers a comprehensive framework for balancing operational constraints 

and maximizing value creation. It leverages data-driven insights, mathematical modeling, and 

optimization techniques to prescribe actionable strategies. 

(3.5) 
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 Figure 3.4 – Prescriptive algorithm. (Source: this author) 
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To further clarify the algorithm, pseudocode 3.5 outlines the process of optimization beginning 

with input parameters, including asset requirements, operational constraints, and available resources, 

and iterates over assets (i in I) and days (d in D). The key constraints, mentioned in Figure 3.4, are 

applied, such as station availability, tooling, personnel, and material limitations, ensuring that scheduled 

and unscheduled maintenance do not overlap with operations. After defining the revenue and cost 

equations, the optimization process calculates the optimal set of actions to maximize efficiency and 

profitability while adhering to all constraints. This pseudocode will be further reviewed in chapter 4. 

 Pseudocode 3.5 – Optimization algorithm. 

Input: asset maintenance requirements, operational requirement, maintenance cost, available 

resources, revenue parameters 

Output: asset availability, revenue and set of actions or recommendations 

1: procedure: objective function definition 

2:OF← ObjectiveFunction = Max(Rev-Cost)	 ⊳	Objective function definition (eq. (1)) 

3: for each i ∈ I ⊳	 Iterate through assets  

4:   for each d ∈ J ⊳	 Iterate through days  

5:   ∑ ∑ (#!" +	&!")"∈$ ≤ )"%∈&  ⊳	 Station constraint  

6:  	∑ ∑ #!""∈$ ≥ +'%∈&  ⊳	 Temporal constraint 

7:   ∑ ∑ (#!" +	&!")"∈$ ∗ -./!"( ≤ -./)"!∈*  ⊳	 Tooling constraint 

8:   ∑ ∑ (#!" +	&!")"∈$ ∗ 01/!"( ≤ 01/)"!∈*  ⊳	 Personnel constraint 

9:   ∑ ∑ (#!" +	&!")"∈$ ∗ )*+!"% ≤ )*+&"!∈'  ⊳	 Material constraint 

10: ∑ ∑ (#!" +	-!")"∈$ ≤ 1!∈'  
⊳	 If scheduled maintenance happens, 

operation cannot happen and vice versa 

11: ∑ ∑ (&!" +	-!")"∈$ ≤ 1!∈'  
⊳	If unscheduled maintenance happens, 

operation cannot happen  

12:     end for ⊳	 End iteration through assets  

13:  end for ⊳	 End iteration through days  

14: Restrictions ← [rest1; rest2; rest3; rest4; 

rest5] 
⊳	 Build restriction matrix 

15: model.A ← 	restrictions ⊳	 Definition of restrictions within gurobi 

16: model.OF ←	OF ⊳	 Definition of OF in solver 
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17: Rev = ∑ ∑ (-!" ∗"∈$!∈'

/01_304_5041670_3489) 
⊳	 Revenue equation 

18: Cost = ∑ ∑ :#!" ∗ ;85<()*+"!"#$ +	&!" ∗"∈$!∈'

;85<,-()*+"!"#$ 	= 
⊳	 Cost equation 

19: Optimize(Rev-Cost) ⊳	 Objectiva Function Optimization 

 
 

3.2.3 Algorithm Functional Check 
 

Let’s suppose aircraft A suffers an unscheduled failure still on-ground, at Confns, before 

the flight from Confins to Campinas, as shown in Figure 3.7. The failure is related to ATA 

Chapter 21 and São Paulo hangar has the personnel, material and tool capabilities to repair such 

a failure but not in that specific day. Without the algorithm, the decision could be complete the 

flight and facing a stoppage of 5 days for the complete repair to be concluded. 

 

Figure 3.6 – Original aircraft A flight path. 
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Implementing the algorithm in this scenario, the optimization would scan, among all 

stations, to verify which one has available resources, slots and capability of repairing the aircraft 

the soonest. However, São José dos Campos has the capability but not the slot availability. 

Ribeirão Preto have both capability and availability has so it could represent a good choice to 

speed up the repair. However, it is still needed to take another decision: is it better to cancel the 

flight and repair the aircraft at Ribeirão Preto? Divert the technicians from Ribeirão Preto or 

Campinas to repair the aircraft at Confins? Or maybe we could select another aircraft, aircraft 

B, to complete the flight from Belo Horizonte to Campinas and assign the aircraft A to complete 

the flight from Confins to Ribeirão Preto and get the necessary repair?  

The last option is in this case the optimal option, as depicted in Table 3.5.    

 

Figure 3.7 – Original aircraft A flight path. 

Although aircraft B was not assigned in that specific day to any flight, so its deployment 

ensured revenue and system availability maximization.   
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Table 3.5 – Results comparison with and without use of prescriptive optimization. 

Attribute Non-prescriptive Prescriptive Comments 

Availability 99.70% 99.89% 

Aircraft A stays on-ground for 

5 days in the non-prescriptive 

scenario 

Profit - USD 63.000,00 + USD 14.200,00 

In the non-prescriptive 

scenario Aircraft A completes 

the flight to Campinas but 

then stays on ground 5 days 

waiting for maintenance. In 

the prescriptive scenario 

Aircraft A completes a flight 

to Ribeirao Preto while 

Aircraft B is assigned to 

complete the flight from Belo 

Horizonte to Campinas 

Course of 

action 

prescription 

Not available 

Aircraft A undergoes 

maintenance in day 12 

Task 21.1: perform 

troubleshooting 

Task 21.2: remove and 

replace LRU 

GSE utilization: 21.1 

Tool to remove and 

replace LRU 

In the non-prescriptive 

scenario, no course of action 

is provided.  
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Attribute Non-prescriptive Prescriptive Comments 

Avionics FTE: 8 

Powerplant FTE: 0 

Airframe: 0 
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4 Case Studies 
 

To test the framework and its mathematical model, three case studies were conducted. 

The first case study is related to a regional Brazilian airliner with more than 150 destinations 

and a fleet constituted by 9 different platforms of different technological maturities and 

operation types. The objective was to test whether the prescriptive approach of optimizing 

operations requirements and maintenance stoppages holistically (as a unique system) could 

yield better results, in terms of availability and profitability, than the traditional approach of 

prioritizing operations and overspending in maintenance if necessary. To do so two objective 

functions were adopted: the first one, named “non-prescriptive”, pursued to minimize 

maintenance, and the second one, denominated “prescriptive”, focused on maximizing the 

difference between the revenue coming from operation and the cost caused by maintenance.  

The second experiment was focused on testing the extensibility of the framework in the 

health ecosystem. It was considered a real case scenario that occurred in 2020, during the 

COVID-19 pandemic response in the São Paulo state public hospitals network. In this scenario, 

more than 3800 patients and 70 hospitals were considered. The differences between this case 

study and the first one are that in this health real case scenario scheduled maintenance is not 

applicable, duration of maintenance was variable, and patients could be treated in any of the 

3800 hospitals. Additionally, the objective function adopted was the prescriptive one, trying to 

maximize survivability and minimize costs. Results were then compared to real-case scenario 

mortality. 

The third and last experiment considered operations of the Brazilian regional airliner of 

case study 1 adding variability in hangar supportability in terms of ATA chapters, the 

constraints of technical personnel, and ground support equipment for each hangar. The 

objective was to test if the framework could not only increase operations profitability 

recommending for each aircraft the best holistic strategy in terms of where to provide 
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maintenance and when, but also recommend maintenance task course of action prescription 

providing full-time equivalents personnel, date, location, tasks, ATA Chapter to be repaired and 

aircraft information. As for experiment 1, the results were compared using two objective 

functions: the “non-prescriptive”, that pursued minimizing maintenance, and the second one, 

denominated “prescriptive”, which focused on maximizing the difference between the revenue 

coming from the operation and the cost caused by maintenance. 

For each case study assumptions, results, and limitations are presented and discussed. 

 
 
4.1 Case Study 1: Regional Airliner Operation Scenario 
 
4.1.1 Scope and Assumptions 
 

This simulation was designed to optimize maintenance scheduling and tail assignment 

for an airline fleet, considering both scheduled and unscheduled maintenance events. The 

primary goal is to maximize the difference between revenue and cost ensuring regulatory 

compliance while yielding better results than the traditional approach that prioritizes operations 

over maintenance. The model integrates multiple factors, including flight schedules, 

maintenance durations, and hangar capacities. 

The next sections present the operation simulation assumption, the optimization 

mathematical model, the pseudocode, and the results. 

 

4.1.2 Operation Simulation 
 

The simulation was based on a Brazilian regional airliner operation with the fleet 

summarized in Table 4.1148, 152, 153. This airliner operates in more than 150 cities scattered across 

all Brazilian territory and in 7 cities internationally as depicted in Figure 4.1.   
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 Figure 4.1 – Airliner hub network (Source: this author) 

 

Table 4.1 – Fleet characteristics. 

OEM Aircraft Qty. 
PHM  

enabled 

Average 

age  

(years) 

Seats 

Wingspan 

x length 

(m2) 

Slot 

occupation 

(m2) 

Airbus A320neo 54  5 174 1345 942 

Embraer E-195 41  9 118 1111 778 
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OEM Aircraft Qty. 
PHM  

enabled 

Average 

age  

(years) 

Seats 

Wingspan 

x length 

(m2) 

Slot 

occupation 

(m2) 

ATR 72-600 46  8 70 735 515 

Cessna 
Caravan 

208B 
23  16 9 91 64 

Embraer E195-E2 27  2 136 1457 1020 

Airbus A321neo 8  3 214 1593 1115 

Airbus A330-900 3  3 298 4074 2852 

Airbus A330-200 1  18 272 3547 2483 

Airbus A350-900 2  6 334 4325 3028 

 Total 205 - 5 - - - 

 
The fleet characteristics encompass several key parameters for each aircraft model, 

including the OEM, the number of aircraft in the fleet, whether PHM is enabled for that model, 

the average age of the aircraft, the seating capacity, the physical dimensions (expressed as 

wingspan multiplied by length), and the slot occupation area in square meters. The slot 

occupation was obtained considering that the parking of aircraft in MRO is done in such a way 

that aircraft wings are interleaved, allowing a more optimized usage of the available area. Thus, 

the assumption is that the effective occupied slot area by each aircraft is equal to 70% of the 

area obtained by multiplying the aircraft wing span and lengths. 
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The fleet includes 54 Airbus A320neo aircraft, each with an average age of 5 years, a 

seating capacity of 174 passengers, and a slot occupation of 942 square meters. In contrast, the 

fleet also includes smaller aircraft like the Cessna Caravan 208B, which has a seating capacity 

of 9 and occupies just 64 square meters of slot space. The tables highlight the presence of PHM 

capabilities in certain aircraft models such as the Embraer E195-E2 and the Airbus A330-900, 

which support advanced predictive maintenance strategies. The diversity in aircraft sizes, 

technological maturity, ages, and capabilities requires an adaptable approach to maintenance as 

presented in the research question of Table 2.4. 

Flight paths (origin-destination) and flight hours flown per day by each aircraft were 

collected directly from the airliner website for all 150 destinations151. Table 4.2 presents an 

example of the data collected in terms of flight hours per trip, flight path, and flight frequency, 

based on weekdays, over 365 days. The entire airliner operation is available in Appendix B. 

Table 4.2 – Operation characteristics. 

Aircraft Serial Origin Destination 

Flight  

duration 

(hours) 

Departure Frequency 

A320neo 1063 Campinas Confins 1.17 6:15 

MON 

TUE 

SAT 

 
After defining the assumptions related to the operation, the assumptions related to the 

product maintenance requirements and reliability were mapped out. Firstly, the maintenance 

intervals for A-check and C-check were identified160, 161 as presented in Table 4.3. 
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Table 4.3 – Fleet maintenance characteristics. 

Aircraft 

Maintenance check interval  

A-check C-check 

Flight 

hours 
Calendar Duration 

Flight 

hours 
Calendar Duration 

(hours) (months) (days) (hours) (months) (days) 

A320neo 750 4 7 7500 24 30 

E-195 750 4 7 7500 24 30 

ATR-72-600 750 4 7 8000 24 30 

208B Caravan 500 3 5 7000 18 30 

E195-E2 1000 6 7 10000 24 30 

A320neo 750 4 7 7500 24 30 

A321neo 750 4 7 7500 24 30 

A330-900 1000 6 7 10000 24 30 

A330-200 1000 6 7 10000 24 30 

A350-900 1000 6 7 10000 24 30 

 
Regarding the unscheduled maintenance, the MTBURs were used to calculate the 

probability of failure per each ATA Chapter in the function of time t corresponding to the 

accumulated sum of flight hours while the probability distribution utilized is the exponential 
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distribution155 as shown in equations 4.1 and 4.2. Specialists were consulted to validate the 

estimated MTBUR for each ATA Chapter for each model. Table 4.4 lists an overview of the 

MTBUR values per each model and ATA Chapter. The complete list is available in Appendix 

B. 

Table 4.4 – MTBUR per each model and ATA Chapter. 

Model 
MTBUR 

ATA 21 ATA 22 ATA 23 ATA 24 

E-195 1098 5953 1469 1140 

E195-E2 1440 1098 5953 1469 

A330-900 2000 2300 6500 2300 

A320neo 1650 9617 2062 2104 

 

The unscheduled maintenance duration was estimated as 1 day if the maintenance was 

performed in a hangar with corrective maintenance capability, and 2 days if the aircraft was in 

a hangar with organizational-level maintenance capability, due to the necessity of deploying 

technicians and materials from other hangars to repair the aircraft, as validated by the specialists 

consulted. It is important to notice that unscheduled maintenance probability is a probability 

that, when identified in the real world, must be updated so the model is able to provide 

recommendations that reflect the up-to-date asset state. This is particularly true when the model 

is integrated to a digital twin of the fleet and support resources, allowing the framework to run 

whenever there is a disruption due to situations found in the real world. The framework needs 

to be agile and run within businesses’ decision time. 

The full list of maintenance events used to estimate the degradation is presented in 

Appendix B. 

• F(t): probability of failure 
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• L: failure ratio 
• M: accumulated flight hours 

 
N(M) = O −	P+,- 

 
L = O/RSTUV 

 
Regarding the PHM failure prediction, no data was available or identified about the 

degradation ratio in function of the accumulated flight hours per ATA Chapter and because of 

this, degradation was estimated using the MTBUR as baseline and reference values mapped in 

the literature157, 158. Outcomes are presented in results Section while the algorithm developed to 

estimate the maintenance imperfection is presented in Section 4.1.4.    

The simulation provided for each aircraft the dates, within the period considered, of 

maintenance occurrences according to their intervals and accumulated flight hours for 

scheduled events, while the unscheduled events were mapped out through the exponential 

probability through equation 4.1, considering the failure ratio for each ATA chapter calculated 

through equation 4.2, adjusted according to PHM forecasts estimation for those assets with 

prognostics systems. Table 4.5 presents an extract of the operational simulation results. All the 

maintenance events are presented in the Appendix B. 

Table 4.5 – Extract of operational simulation results in terms of maintenance 

occurrences days according to the simulation temporal assumptions.  

Aircraft Serial 
A-check 

days 

C-check 

days 

Unscheduled maintenance 

estimated days 

E195-E2 1158 

15 

40 

80 

122 

160 

215 

2 

22 

32 

44 

56 

(4.2) 
 

(4.1) 
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Aircraft Serial 
A-check 

days 

C-check 

days 

Unscheduled maintenance 

estimated days 

58 

85 

95 

130 

200 

220 

243 

280 

300 

 
In conclusion, the operational simulation effectively provided maintenance schedules 

and estimated unscheduled events days, in the 365 days considered (one-year period), for each 

aircraft in the fleet, representing the events that must be managed by the optimization algorithm. 

The next Section will present the maintenance capability model that addresses the 

maintenance resources used to perform maintenance—such as hangar slots, tooling, personnel, 

and materials.  

 
4.1.3 Maintenance Capability Model 
 

Table 4.6 illustrates the main maintenance hangar locations and their capabilities across 

these three levels of maintenance described in Chapter 2. For instance, the Campinas facility 

(VCP) supports organizational, intermediate, and depot maintenance, whereas locations like 

Manaus (MAO) and Cuiaba (CGB) are equipped for organizational and intermediate 

maintenance only152, 154, 162, 163, 166, 167, 168. Regarding the main hub Campinas, its slot area was 

defined indirectly since it is reported that Campinas can accommodate up to 8 narrow bodies 
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or 2 wide bodies at the same time during basic checks163, 166. As presented in equations 4.3, 4.4 

and 4.5, the largest narrowbody and widebody were used to estimate the slot area. The whole 

hangar network maintenance capability is presented in Appendix C. 

 
 

WXYZP[M	\XYY]^	_]`a	XYPX = Obcde. 
 

WXYZP[M	^f`P	_]`a	XYPX = gbcde. 
 

h[MfeXMP`	iXejf\X[	kl_	[m]M	XYPX ≥ Rno	 pObcd	q	d = 	dccre.

gbcd	q	c = 	sbtse. 

 
Similarly, for the Pampulha hub, it is estimated that its capability is at least 5 narrow 

bodies166, 167. Equations 4.6 and 4.7 present the estimating calculations for Pampulha’s hub slot 

area. 

 
WXYZP[M	\XYY]^	_]`a	XYPX = uude. 

 
h[MfeXMP`	vXejlmkX	kl_	[m]M	XYPX ≥ uud	q	t = gddte. 

 

Table 4.6 – Main maintenance hangar locations and their maintenance 

capability. 

Location 
IATA 

code 

Slots 

area 

(m2) 

Maintenance level capability 

Organizational Intermediate Depot 

Campinas VCP 8224    

Pampulha PLU 3885    

Manaus MAO 2800    

Cuiaba CGB 2800    

Recife REC 2800    

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 
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This distribution of capabilities across various locations is crucial for planning and 

executing maintenance activities efficiently, ensuring that each facility is utilized to its full 

potential according to operation demands. 

Table 4.7 provides an overview of the maintenance locations available for each aircraft 

in the fleet, detailing where basic and intermediate checks (A-check and C-check), as well as 

unscheduled maintenance, can be performed. The Table highlights specific bases where the C-

check maintenance activities are conducted, reflecting the operational flexibility and capacity 

of the maintenance network. 

For instance, the Airbus A320neo and the Embraer E195-E2 can undergo C-check 

maintenance at the Campinas facility, with an additional 30 locations available for A-check 

maintenance and over 120 locations for unscheduled maintenance. Similarly, the ATR 72-600 

is serviced for C-check at Pampulha, with a similar spread of additional locations for A-check 

and unscheduled maintenance. 

Table 4.7 – Fleet C-check and A-check locations. 

Aircraft 

Locations and Maintenance Levels 

Depot Intermediate Organizational 

C-check 

A-check 

Unscheduled 

A-check 

Unscheduled 

Unscheduled  

 

A320neo Campinas +30 locations +120 locations 

E-195 Pampulha +30 locations +120 locations 

72-600 Pampulha +30 locations +120 locations 
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Aircraft 

Locations and Maintenance Levels 

Depot Intermediate Organizational 

C-check 

A-check 

Unscheduled 

A-check 

Unscheduled 

Unscheduled  

 

Caravan 208B Pampulha +30 locations +120 locations 

E195-E2 Campinas +30 locations +120 locations 

A321neo Campinas +30 locations +120 locations 

A330-900 Campinas +30 locations +120 locations 

A330-200 Campinas +30 locations +120 locations 

A350-900 Campinas +30 locations +120 locations 

 
 
 
4.1.4 Optimization Algorithm and Mathematical Model 
 

The algorithm integrates operations management and maintenance by acknowledging 

the influence of operations on maintenance and vice versa.  

This holistic approach highlights that for PsM to be fully effective, it must not only 

optimize maintenance activities but also shape operational decisions. This indicates a more 

dynamic and interconnected system where the optimization of maintenance activities is carried 

out in tandem with operational adjustments. This strategy ensures that both maintenance and 

operations are aligned, leading to enhanced efficiency, reduced downtime, and improved 

overall performance of complex systems. As mentioned in Chapter 4, results between the 
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prescriptive and non-prescriptive approaches were compared using two different objective 

functions. 

This Chapter presents the mathematical model and pseudocode focusing on the 

scheduling of fixed interval maintenance checks and unscheduled maintenance. 

Constants & parameters 

• F: fleet size; 
• Acftpayload = number of seats; 
• VPwP\lP/01_304-= average ticket price; 

• xyyljXMf]\14-56= average fleet aircraft occupation ratio;   
• Flightday = number of flights per day; 
• Totpossible_op_days = total possible operational days; 
• Totdowntime = total downtime due to maintenance; 
• J: set of maintenance team; 
• H: set of stations; 
• h: station in set H; 
• Adh: area of station h at each day d;  
• D: number of operational days; 
• i: aircraft of the fleet F; 
• d: day of the period D; 
• dA: day in which A-check should be scheduled according to the interval z7;   
• dB: day in which unscheduled maintenance should be executed according to operation 

simulation results 
• dC: day in which C-check should be scheduled according to the interval z8;  
• A: A-check duration; 
• B: unscheduled maintenance duration; 
• C: C-check duration;  
• I9: A-check interval; 
• I:: C-check interval; 
• F;<=>?#@>9: daily maintenance cost when A-check maintenance occurs in the baseline 

interval;  
• F><A?B9: daily maintenance cost when A-check maintenance occurs before the 

baseline;  
• F?<C>9: daily maintenance cost when A-check maintenance occurs after the baseline; 
• F;<=>?#@>D: daily unscheduled maintenance cost when maintenance is executed on the 

day of the event; 
• F?<C>D: daily unscheduled maintenance cost when maintenance is executed later than 

1 day after the event;  
• F;<=>?#@>:: daily maintenance cost when C-check maintenance occurs in the baseline 

interval;  
• F><A?B:: daily maintenance cost when C-check maintenance occurs before the 

baseline;  
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• F?<C>:: daily maintenance cost when C-check maintenance occurs after the baseline; 
• /()*+),-!": cost, or revenue loss, due to forgone flight for each serial i and day d;  
• |9: number of A-check intervals in the period D considered;  
• |:: number of C-check intervals in the period D considered; 
• }?<C>+: day after dA in which A-check is scheduled; 
•  }?<C>,: day after dB in which unscheduled maintenance is scheduled; 
• }?<C>-: day after dC in which C-check is scheduled; 
• }><A?B+: day in which A-check is scheduled, before dA; 
• }><A?B-: day in which C-check is scheduled, before dC; 
• EA: quantity of days before }9 in which A-check is scheduled; 
• EC: quantity of days before }:  in which C-check is scheduled; 
• FA: quantity of days after }9 in which A-check is scheduled; 
• FB: quantity of days after }D in which unscheduled maintenance is scheduled; 
• FC: quantity of days after }:  in which C-check is scheduled; 
• m: maintenance type  

 
Decision variables 

Table 4.8 – Decision variables. 

Variable State Type 

!#$% 
• Equal to 1 if A-check is scheduled for aircraft i on day d 

and hangar h 
• 0 otherwise  

Binary 

-#$% 
• Equal to 1 if unscheduled maintenance is executed for 

aircraft i on day d and hangar h 
• 0 otherwise 

Binary 

~#$% 
• Equal to 1 if C-check is scheduled for aircraft i on day d 

and hangar = Campinas or Pampulha 
• 0 otherwise  

Binary 

7#$%											 • Equal to 1 if flight is assigned for aircraft i on day d    
• 0 otherwise  

Binary 

 
Objective Function Parameters Calculation 

 
/01# = 		∑!!"# ∗ /-.*/01 ∗ 4561_89:0;91 +∑!!"# ∗ //.2-1 ∗ 4561_5:#9;1 +
∑!!"# ∗ /3.4-/!,-1 +∑!!"# ∗ /()*+),-!" +	∑<!"# ∗ /-.*/05 ∗ 4561_89:0;95 +
∑<!"# ∗ //.2-5 ∗ 4561_5:#9;5 +∑<!"# ∗ /3.4-/!,-1 + ∑<!"# ∗ /()*+),-!" + 
∑(!"# ∗ /3.4-/!,-6 + ∑(!"# ∗ //.2-6 ∗ 4561_5:#9;6 +∑(!"# ∗ /()*+),-!" 
 
=9>9?@9 = ∑)!" ∗ 	A	=9>9?@97-*_4-.2 ∗ BCDEℎ#".0 ∗ FG:#7.0/)." ∗ )GG@H5#D0?*.2!)I!!

  
 

 
 

(4.8) 

(4.9) 
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Non-Prescriptive Objective Function 

 

789:;<=>:6?@;<=A@ = 0=@(FAG<) 

 
Prescriptive Objective Function 

 

789:;<=>:6?@;<=A@ = 0C$(D:>:@?: − FAG<) 

 

Calculations 

 

Equations 4.12 and 4.13 define that }9 and }:  are multiples of the respective A-check 

and C-check intervals. Equations 4.14 and 4.15 determine the number of intervals, which is 

given by the division between D and the interval IA for A-check and IC for C-check. Equations 

4.16, 4.18, and 4.19 define dlate while equations 4.17 and 4.20 present the calculation for dearly 

since, if no slots are available, maintenance may be pushed back or pulled forward. Equations 

4.21 and 4.22 calculate the number of days in which A-check is scheduled before or after dA. 

Similarly, equations 4.23 and 4.24 calculate the number of days in which C-check is scheduled 

before or after dC.  

	41 = ? × K1	| ?: 1 à L1, n ∈ Integer 
 

45 = ? × K5 	| ?:  1 à L5, n ∈ Integer 
 

L1 ≥
%
9"
, L1 ∈ K?#9E9;, L1 > 0 

 

L5 ≥
%
9#
, L5 ∈ K?#9E9;, L5  > 0 

 

41 < 4/.2-" ≤	41 +	K1 − 	F	 

 
41 −	K1 + 	F ≤ 4-.*/0" <	41	 

 

46 < 4/.2-$ ≤ 46 +	K6 − 	R 

 

45 < 4/.2-# ≤ 45 +	K5 − 	/ 

(4.10) 

(4.12) 

(4.13) 

(4.17) 

(4.14) 

(4.19) 

(4.18) 

(4.15) 

(4.16) 

(4.11) 
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45 −	K5 + 	/	 ≤ 4-.*/0# <	45 	 

 

	S1 =	41 − 4-.*/0" 
 

 
																																																					B1 =	4/.2-" −	41 

 
 

S5 =	45 − 4-.*/0#  

 
 

B5 =	4/.2-# −	45  
 
 
For this experiment, it has been assumed that anticipation of maintenance does not 
generate additional costs or penalties thus as seen in equations 4.25 and 4.26: 

F><A?B9 =	F;<=>?#@>9 

F><A?B: =	F;<=>?#@>:  

Constraints 

 

A key consideration is the limitation imposed by the number of available maintenance 

slots described in Equation 4.27. For any given day d, the number of aircraft slated to receive 

maintenance — be it an A-check, C-check, or unscheduled — must not exceed the hangar area 

available, denoted by Ah. This stipulation enforces a cap on the maximum number of aircraft 

undergoing maintenance at any one time, ensuring that the physical space available is not 

exceeded. Equations 4.28 and 4.29 enforce that for each aircraft i on each day d, the cumulative 

number of A-checks and C-checks conducted is bound by a non-negotiable OEM requirement. 

These requirements, denoted as KA, KC, serve as the minimum thresholds for A-checks and C-

checks that must be performed to uphold the safety and performance standards.  

Similarly, Equations 4.30 and 4.31 enforce the intervals between maintenance checks. 

For A-checks, the left hand of the Equation 4.30, !(#$%)@ − !(#$%)	@+H, captures the interval 

for }9 > }><A?B+ 

for 4/.2-" > 41 

(4.21) 

(4.22) 

for 45 > 4-.*/0# 
 

for 4/.2-# > 45 

(4.20) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 
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between two consecutive checks for an aircraft i and ensures that it does not exceed I9, as 

mandated by the OEM. Similarly, for C-checks, the intervals are represented by   ~(#$%)@ −

~(#$%)	@+H, adhering to the OEM-specified limits I: .  

Constraints 4.32, 4.31, and 4.32 enforce that each maintenance event must happen while 

equations 4.33, 4.34, and 4.35 enforce that an aircraft cannot fly and receive maintenance at the 

same time. 

 
UUU(!!"# +	(!"# + <!"#)

"∈%
≤ F"#

!∈&#:'
 

 
													UUU!!"#

"∈%
≥ L1

!∈&#∈'
 

 

UUU<!"#
"∈%

≥ L5
!∈&#∈'

 

																																																																													 

		!(!"#), − !(!"#)	,>? ≤ K1 

 

<(!"#), − <(!"#)	,>? ≤ K5  

          
UUU(!"#

"∈%
≥ 1

!∈&#∈'
 

 

													UUU(!!"# +	)!"#)
"∈%

= 1

!∈&#∈'
 

 

UUU((!"# +	)!"#)
"∈%

= 1																														

!∈&#∈'
 

 

UUU(<!"# +	)!"#)
"∈%

= 1																														

!∈&#∈'
 

 
Maintenance Imperfections 

Maintenance imperfections are estimated pos-optimization by using the methodology 

that considers the Brownian motion to calculate accumulated degradation after each 

(4.27) 

(4.28) 

for each day d, aircraft i 
and station h 

for each day d, aircraft 
i and station h 

(4.30) 

(4.29) 

for each d, i, h and n 

for each day d, aircraft i 
and station h = 
Campinas or Pampulha 
 

for each d, h and i (4.32) 

for each d, h and i (4.33) 

for each d, h  and i (4.34) 

for each d, i and h = 
Campinas or 
Pampulha 

(4.35) 

(4.31) for each d, i, n h = 
Campinas or Pampulha 
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maintenance event43. Koops (2020) describes the degradation before and after repair using a 

stochastic model that is modeled as drifted Brownian motion. This process is characterized by 

two coefficients: the drift coefficient (η) which represents the expected rate of degradation, and 

the diffusion coefficient (σ) which accounts for the magnitude of Gaussian noise perturbing the 

trend. The Wiener process can be expressed as shown in equation 4.36. 

 
W(X) = YZ(X) + 	'[(Z(X)) 

 
Being !(<) the degradation at time t, Ä(<) =t assuming a linear degradation model, ℎ >

0 is the drift coefficient, G denotes the diffusion coefficient, and B(t) is the constant for 

Brownian motion43. In the context of imperfect repairs, Koops (2020) utilizes an improvement 

factor "! to describe the degradation level before and after the K-th repair. The degradation 

levels !! and !!" before and after the K-th repair are expressed as presented in equation 4.37: 

oI" = (\ − ÉI)oI 
 

where 0 ≤"! ≤ 1. The two limiting cases correspond to minimal repair ("! = 0), "as bad 

as old" and perfect repair ("! =1), "as good as new". The effect of repair is subject to 

randomness and the improvement factor "! is modeled by a truncated normal distribution in 

the range [0,1]. The assumption is that for an almost perfect maintenance procedure based on 

replacement and removal, as the ones addressed by this simulation, "! = 0,9, h	 = 1, à = 0,3, 

ä = 1 which is the maximum degradation allowed (threshold). Considering as number of 

iterations the total number of maintenance events per model, and as t the MTBUR values, the 

accumulated degradations were calculated. As a result, a decrease of MTBUR values of around 

10% by the end of one year was achieved. 

 Pseudocode 4.2 presents the algorithm used to calculate the degradation due to 

maintenance imperfection based on each model’s MTBURs. Here’s a breakdown of each part: 

1. Inputs and Outputs: 

a. Inputs: operational data, maintenance events, MTBUR list. 

(4.37) 

(4.36) 
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b. Outputs: new MTBURs and degradations. 

2. Data Loading (Steps 1-3): 

a. Load data from Excel files into data frames. 

3. Parameters Definition (Steps 4-9): 

a. Define wiener model parameters 

4. Degradation and MTBUR Calculation (Steps 10-15): 

a. Define the wiener equation 

b. Run the equation through flight hours and repair events to calculate degradation 

per aircraft model 

c. Calculate new MTBURs 

5. Print Results (Steps 16-17): 

a. Print new MTBURs per model and degradations 

Pseudocode 4.2 – Case study 1: maintenance imperfection evaluation. 

Input:  operational data, maintenance events, MTBUR list 

Output: new MTBURs and degradations  

1: operation_df← operation.xlsx ⊳	Load operational data	

2: maintenance_df← maintenance_events.xlsx ⊳	Load maintenance events	

3: mtbur_df← MTBUR_list.xlsx ⊳	Load MTBUR list	

4: "k ←0,9 ⊳	Improvement factor (repair efficiency) 

5: h ←1  
⊳	Drift coefficient (rate of degradation 

over time) 

6: à ← 0,3 
⊳	 Diffusion coefficient (volatility in 

degradation)  

7: B ← 1 ⊳	 Degradation threshold  

8: Initial_degradation ← 0 ⊳	 Initial degradation  

9:	}C ← 1 ⊳	 Time step in flight hours  

10: for each  	`- ∈ S ⊳	 Iterate through time 

11:   for each  YPjXfY ∈ RXf\_PwP\M[ ⊳	 Iterate through repairs 



   98 
 
 

12: 						W(X) = YZ(X) + 	'[(Z(X)) ⊳	 Degradation calculation  

13:      new_mtbur = mtbur*(1-	W(X)) ⊳	 New MTBUR calculation 

14:   end for 
⊳	 End iteration through maintenance 

events  

15: end for ⊳	 End iteration through time  

16: Print results ← Print_new_mtbur ⊳	 Present new MTBURs 

17: Print results ← Print_degradation ⊳	 Present degradation  

 

New MTBURs are presented in the Results Section. 

Optimization Algorithm Pseudocode 

 

The pseudocode 4.3 outlines the steps for implementing the optimization model for 

aircraft maintenance scheduling, focusing on a non-prescriptive objective function that seeks to 

minimize maintenance costs. Here’s a breakdown of each part: 

6. Inputs and Outputs: 

a. Inputs: operational, maintenance, support, and fleet data. 

b. Outputs: fleet availability, revenue, maintenance costs, and a non-prescriptive 

objective function's performance. 

7. Data Loading (Steps 1-4): 

a. Load data from Excel files into data frames. 

8. Model Setup (Steps 5-9): 

a. Define a Gurobi optimization model. 

b. Define decision variables for different types of maintenance and flight 

assignments: 

i. Xidh for A-checks (intermediate-level maintenance). 

ii. Yidh for unscheduled maintenance. 

iii. Zidh for C-checks (depot-level maintenance). 
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iv. Oidh for flight assignments. 

9. Constraints: 

a. Station Capacity Constraint (Steps 10-16): 

i. Iterate over assets (i), days (d), and stations (h) to ensure that the total 

number of maintenance events (A-check, C-check, and unscheduled) 

does not exceed the station's capacity (Ah). 

b. Minimum Maintenance Constraints (Steps 17-25): 

i. Ensure that a minimum number of C-checks (KC) and A-checks (KA) 

are scheduled. Unscheduled maintenance events must occur 

10. Cost Calculation (Steps 26-33): 

a. Define Cost as a linear expression to minimize. It is calculated by iterating 

through assets and days to accumulate it, including: 

i. Baseline costs for A-checks, C-checks, and unscheduled 

maintenance. 

ii. Cost components for early and late maintenance penalties, and 

iii. Forgone revenue due to missed flights. 

11. Objective Function and Optimization (Steps 34-35): 

a. Set the objective function to minimize the Cost. 

12. Post-Optimization Calculations and Output (Steps 36-40): 

a. Calculate fleet availability based on dispatch reliability. 

b. Print results: fleet availability, maintenance cost, revenue generated, and 

detailed maintenance schedule. 

 Pseudocode 4.3 – Case study 1: non-prescriptive objective function. 
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Input:  operational data, maintenance requirements, support data, fleet data 

Output: fleet availability, operational revenue. Maintenance cost and revenue for the non-

prescriptive objective function  

1: operation_df← operation.xlsx ⊳	Load operational data	

2: fleet_df← fleet.xlsx ⊳	Load fleet data	

3: maintenance_df← maintenance.xlsx ⊳	Load maintenance data	

4: stations_df← stations.xlsx ⊳	Load support data	

5: model←gp.model ⊳	Optimization start	

6: Xidh ←a_check(days, serial, hangar binary) ⊳	A-check variable definition	

7: Yidh ←unscheduled(days, serial, hangar binary) ⊳	 Unscheduled maint. variable definition 

8: Zidh ←c_check(days, serial, hangar binary) ⊳	C-check variable definition 

9:Oidh ←Flight_assigned(days, serial, hangar 

binary) 
⊳	Flight variable definition 

10: for each i ∈ 6 ⊳	 Iterate through assets  

11:   for each d ∈ J ⊳	 Iterate through days  

12:     for each h ∈ å ⊳	 Iterate through stations  

13: ∑ ∑ ∑ (!!"# +	(!"# + <!"#)"∈% ≤ F"#!∈&#:'  ⊳	 Station area constraint  

14:     end for ⊳	 End of iteration through stations  

15:   end for ⊳	 End of iteration through days  

16: end for ⊳	 End of iteration through serials  

17: for each i ∈ 6 ⊳	 Iterate through assets  

18:   for each d ∈ J ⊳	 Iterate through days  

19:     for each h ∈ å ⊳	 Iterate through hangars 

20:  	∑ ∑ ∑ <@AℎA∈C ≥ LD@∈Eℎ∈F ⊳	 C_check minimum events constraint 

21:  	∑ ∑ ∑ !!"#"∈% ≥ L1!∈&#∈' ⊳	 A_check minimum events constraint 

22:  	∑ ∑ ∑ (!"#"∈% ≥ 1!∈&#∈' ⊳	 Unscheduled maint. must happen 

23:     end for  ⊳	 End iteration through hangars 

24:   end for ⊳	 End iteration through days  

25: end for ⊳	 End iteration through assets  

26: Cost = gp.LinExpr() ⊳	 Cost defined as a linear expression  

27: for each i ∈ 6 ⊳	 Iterate through assets  
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28:   for each d ∈ J ⊳	 Iterate through days  

29:     for each h ∈ å ⊳	 Iterate through hangars 

30: /01# = 		∑!!"# ∗ /-.*/01 ∗ 4561_89:0;91 +

∑!!"# ∗ //.2-1 ∗ 4561_5:#9;1 +∑!!"# ∗

/3.4-/!,-1 + ∑!!"# ∗ /()*+),-!" +	∑<!"# ∗

/-.*/05 ∗ 4561_89:0;95 +∑<!"# ∗ //.2-5 ∗

4561_5:#9;5 +∑<!"# ∗ /3.4-/!,-1 + ∑<!"# ∗

/()*+),-!" + ∑(!"# ∗ /3.4-/!,-6 + ∑(!"# ∗ //.2-6 ∗

4561_5:#9;6 +∑(!"# ∗ /()*+),-!" 

⊳	 Cost calculation 

31:     end for  ⊳	 End of iteration through hangars 

32:   end for ⊳	 End of iteration through days  

33: end for ⊳	 End of iteration through assets  

34: model.setObjective(Cost, GRB.MINIMIZE) ⊳	 Objective definition 

35: model.optimize() ⊳	 Optimization start 

36: Availability ← Dispatch_reliability ⊳	 Post-optimization availab. calculation 

37: Print results ← Print_availability ⊳	 Availability ouput 

38: Print results ← Print_maintenance_cost ⊳	 Maintenance cost output  

39: Print results ← Print_revenue ⊳	 Revenue output 

40: Print results ← Print_maintenance_schedule ⊳	 Maintenance schedule output 

 
 

The diagram shown in Figure 4.4 provides a structured overview of the non-prescriptive 

experiment process:  

1. Data research: inputs from specialists, web sources, and papers are collected to 

inform the model. 

2. Data structuring: collected data is organized into four categories, namely, 

operation, fleet, station, and maintenance. 

3. Algorithm structure:  
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a. Data Loading: loads operation, fleet, support, and maintenance data and 

transforms it on data frames for processing ease. 

b. Gurobi Model Creation: a Gurobi optimization model is established called 

“Maintenance_Scheduling”. Constraints are defined and objective function 

is determined. 

4. Post-Optimization Calculation and Results: the model optimizes the cost and 

outputs results. 
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Figure 4.4 – Case study 1: non-prescriptive experiment process. 

Data research 
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ss 
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Data structuring 
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#Data loading 
#Loading operational data 

#Loading fleet 
data #Loading support capability 
data #Loading maintenance events data 

#Gurobi model creation 

Operation_df 

Fleet_df 
Station_df 
Maintenance_df 

#Constraint 1: no more a/c than 
available space UUU(!!"# +	(!"# + <!"#)

"∈%
≤ F"#

!∈&#:'
 

 #Constraint 2: minimum A-checks scheduled 

!!!"%&
&∈(

≥ $)
%∈*+∈,

 

 

#Constraint 3: minimum C-checks scheduled 

#Constraint 4: unscheduled maintenance must happen 

#Objective function definition  Cost = gp.LinExpr() 
 

model.setObjective(Cost, GRB.MINIMIZE) 
model.optimize() 

Results 
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The pseudocode 4.5 presents the steps for implementing the optimization model 

focusing on a non-prescriptive objective function that seeks to maximize maintenance profit, 

that is the difference between revenue and cost. Here’s a breakdown of each part: 

1. Inputs and Outputs: 

a. This section is equal to the one in Pseudocode 4.3. 

2. Data Loading (Steps 1-4): 

a. This section is equal to the one in Pseudocode 4.3. 

3. Model Setup (Steps 5-9): 

a. Define a Gurobi optimization model. 

b. Define decision variables for different types of maintenance and flight 

assignments: 

i. Xid for A-checks (intermediate-level maintenance). 

ii. Yid for unscheduled maintenance. 

iii. Zid for C-checks (depot-level maintenance). 

iv. Oid for flight assignments. 

4. Constraints: 

a. Station Capacity Constraint (Steps 10-16): 

i. Iterate over assets (i), days (d), and stations (h) to ensure that the total 

number of maintenance events (A-check, C-check, and unscheduled) 

does not exceed the station's capacity (Ah). 

b. Minimum Maintenance & Operations vs. Maintenance Events (Steps 17-

26): 

i. Ensure that a minimum number of C-checks (KC) and A-checks (KA) 

are scheduled. Unscheduled maintenance events must occur. 



   105 
 
 

ii. If the aircraft is flying it cannot undergo maintenance and vice versa. 

5. Cost & Revenue Expression (Steps: 27-28) 

a. Cost and Revenue are defined as linear expressions. 

6. Cost & Revenue Calculation (Steps: 29-34) 

a. Revenue is equal to the sum of the number of flights per day multiplied by 

aircraft seats, average revenue per seat, and occupation ratio.     

b. Cost is defined as showcased in Pseudocode 4.3. 

7. Objective Function (Steps 35-36): 

a. Set the objective function to maximize the difference between Revenue and 

Cost.   

8. Post-Optimization Calculations and Output (Steps 37-41): 

a. As defined in Pseudocode 4.3. 

Pseudo-code 4.5 – Case study 1: prescriptive objective function. 

Input:  operational data, maintenance requirements, hangars data, fleet data 

Output: fleet availability, operational revenue. maintenance cost, revenue and profit for the 

prescriptive objective function  

1: operation_df← operation.xlsx ⊳	Load operational data	

2: fleet_df← fleet.xlsx ⊳	Load fleet data	

3: maintenance_df← maintenance.xlsx ⊳	Load maintenance data	

4: stations_df← stations.xlsx ⊳	Load hangar data	

5: model←gp.model ⊳	Optimization start	

6: Xidh ←a_check (days, serial, hangar binary) ⊳	A-check variable definition	

7: Yidh ←unscheduled (days, serial, hangar binary) ⊳	 Unscheduled maint. variable definition 

8: Zidh ←c_check (days, serial, hangar binary) ⊳	C-check variable definition 

9: Oidh ←Flight_assigned (days, serial, hangar 

binary) 
⊳	Flight variable definition 
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10: for each i ∈ 6 ⊳	 Iterate through assets  

11:   for each d ∈ J ⊳	 Iterate through days  

12:     for each h ∈ å ⊳	 Iterate through stations  

13: ∑ ∑ ∑ (!!" +	(!" + <!")"∈% ≤ F"#!∈&#:' ⊳	 Station area constraint  

14:     end for ⊳	 End of iteration through stations  

15:   end for ⊳	 End of iteration through days  

16: end for ⊳	 End of iteration through serials  

17: for each i ∈ 6 ⊳	 Iterate through assets  

18:   for each d ∈ J ⊳	 Iterate through days  

19:     for each h ∈ å ⊳	 Iterate through hangars 

19:  	∑ ∑ ∑ <@AℎA∈C ≥ LD@∈Eℎ∈F  ⊳	 C_check minimum events constraint 

20:  	∑ ∑ ∑ !!"#"∈% ≥ L1!∈&#∈'  ⊳	 A_check minimum events constraint 

21:  	∑ ∑ ∑ (!"#"∈% ≥ 1!∈&#∈'  ⊳	 unscheduled maintenance must happen 

22:  ∑ ∑ ∑ (!@Aℎ +	)@Aℎ)A∈C = 1@∈Eℎ∈F  ⊳	 No flight if a_check happens 

23:   ∑ ∑ ∑ ((@Aℎ +	)@Aℎ)A∈C = 1		@∈Eℎ∈F  ⊳	 No flight if unscheduled maint. happens 

24:   ∑ ∑ ∑ (<@Aℎ +	)@Aℎ)A∈C = 1			@∈Eℎ∈F  ⊳	 No flight if c_check happens 

24:        end for ⊳	 End hangar iteration 

25:     end for ⊳	 End day iteration 

26:  end for ⊳	 End assets iteration 

27: Cost = gp.LinExpr() ⊳	 Cost defined as a linear expression  

28: Revenue = gp.LinExpr() ⊳	 Revenue defined as a linear expression  

29: for each i ∈ 6 ⊳	 Iterate through assets  

30:  for each d ∈ J ⊳	 Iterate through days  

31:   for each h ∈ å ⊳	 Iterate through hangars 

31:	=9>9?@9 = ∑)!"# ∗ 	A	=9>9?@97-*_4-.2 ∗

BCDEℎ#".0 ∗ FG:#7.0/)." ∗ )GG@H5#D0?*.2!)I!!-
  

⊳	 Revenue calculation  

32:/01# = 		∑!!"# ∗ /-.*/01 ∗ 4561_89:0;91 +

∑!!"# ∗ //.2-1 ∗ 4561_5:#9;1 +∑!!"# ∗

/3.4-/!,-1 + ∑!!"# ∗ /()*+),-!" +	∑<!"# ∗

⊳	 Cost calculation 
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/-.*/05 ∗ 4561_89:0;95 +∑<!"# ∗ //.2-5 ∗

4561_5:#9;5 +∑<!"# ∗ /3.4-/!,-1 + ∑<!"# ∗

/()*+),-!" + ∑(!"# ∗ /3.4-/!,-6 + ∑(!"# ∗ //.2-6 ∗

4561_5:#9;6 +∑(!"# ∗ /()*+),-!" 

32:     end for  ⊳	 End of iteration through hangars 

33:   end for ⊳	 End of iteration through days  

34: end for ⊳	 End of iteration through assets  

35: model.setObjective(Revenue - Cost, 

GRB.MAXIMIZE) 
⊳	 Objective definition 

36: model.optimize() ⊳	 Optimization start 

37: Availability ← Dispatch_reliability ⊳	 Post-optimization availab. calculation 

38: Print results ← Print_availability ⊳	 Availability ouput 

39: Print results ← Print_maintenance_cost ⊳	 Maintenance cost output  

40: Print results ← Print_revenue ⊳	 Revenue output 

41: Print results ← Print_maintenance_schedule ⊳	 Maintenance schedule output 

 
The diagram shown in Figure 4.6 provides a structured overview of the prescriptive 

experiment process:  

1. Data research: inputs from specialists, web sources, and papers are collected to 

inform the model. 

2. Data structuring: collected data is organized into four categories, namely, 

operation, fleet, station, and maintenance. 

3. Algorithm structure:  

a. Data Loading: loads operation, fleet, support, and maintenance data and 

transforms it on data frames for processing ease. 

b. Gurobi Model Creation: a Gurobi optimization models is established. 

Constraints are defined and objective function determined. 

4. Post-Optimization Calculation and Results: the model optimizes the cost and 

outputs results. 
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Figure 4.6 – Case study 1: prescriptive experiment process. 

Data research 

Specialists
s 

Web Papers 

Data structuring 

Operation Fleet Support Mainten. 

Algorithm 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

#Data loading as seen in Figure 4.3 

#Gurobi model creation Model = gp.Model(“Maintenance_Scheduling”) 

#Constraint 1, 2, 3 and 4: as seen in Figure 4.3 

#Objective function definition  Cost = gp.LinExpr() 
 

revenue_per_flight = occupancy_rate * num_seats * ticket_price 
num_flights = flights_per_day_dict[i][d] 
total_revenue += revenue_per_flight * num_flights * 

Results 

Revenue = revenue_per_flight * num_flights 

model.setObjective(Revenue – Cost, GRB.MAXIMIZE) 
model.optimize() 

#Objective: 
maximization of 
profit 

#Constraint 5: if A-checks happens aircraft can’t fly 

!!!(&%& +	)%&)
&∈(

= 1
%∈*+∈,

 

 

#Constraint 6: if unsch. maint. happens aircraft can’t fly 

!!!("%& +	)%&)
&∈(

= 1
%∈*+∈,

 

 

#Constraint 7: if C-check happens aircraft can’t fly 

Revenue = gp.LinExpr() 
 

#Objective function definition  
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4.1.5 Results 
 

This Chapter presents the results of this 1st case study. Table 4.9 showcases an extract 

of the C-check maintenance schedule optimized considering only cost minimization, as the first 

part of the experiment accounted for a non-prescriptive objective function. The result lists the 

aircraft serial numbers, model, maintenance start day, end day, and station. Table 4.10 presents 

A-checks schedules while Table 4.11 showcases unscheduled maintenance occurrence. 

Appendix A presents the full results. Table 4.12 presents the non-prescriptive results in terms 

of dispatch reliability, revenue, cost, and profit. 

Table 4.9 – Case study 1 result extract, non-prescriptive C-check schedule. 

C-check periods 

Serial: 1161, Model: A321neo, Start Day: 107, End Day: 137, Hangar: Campinas 

Serial: 1057, Model: A320neo, Start Day: 96, End Day: 126, Hangar: Campinas 

Serial: 1036, Model: A320neo, Start Day: 65, End Day: 95, Hangar: Campinas 

 

Table 4.10 – Case study 1 result extract, non-prescriptive A-check schedule. 

A-check periods 

Serial: 1158, Model: E195-E2, Start Day: 1, End Day: 8, Hangar: Campinas 

Serial: 1160, Model: E195-E2, Start Day: 153, End Day: 160, Hangar: Campinas 

Serial: 1157, Model: E195-E2, Start Day: 153, End Day: 160, Hangar: Campinas 

 

 

 

 

 

 



   110 
 
 

Table 4.11 – Case study 1 result extract, non-prescriptive unscheduled occurrences. 

Unscheduled maintenance 

Serial: 1024, Model: E-195, Start Day: 16, End Day: 17, Hangar: Manaus 

Serial: 1024, Model: E-195, Start Day: 41, End Day: 42, Hangar: Manaus 

Serial: 1025, Model: E-195, Start Day: 12, End Day: 13, Hangar: Manaus 

 

Table 4.12 – Case study 1 non-prescriptive results in terms of cost, revenue, profit, and 

dispatch reliability. 

Cost  

(USD) 

Revenue  

(USD) 

Profit  

(USD) 

Dispatch Reliability 

$ 164.497.612,92 $ 2.046.415.098,00 $ 1.881.917.485,08 73,90% 

 

Table 4.13 presents an extract of the C-check maintenance scheduled optimized 

considering the maximization of the difference between revenue and cost, as this second part 

of the experiment was based on a prescriptive objective function. The result lists the aircraft 

serial numbers, model, maintenance start day, end day, and station. Table 4.14 presents A-

checks schedules while Table 4.15 showcases unscheduled maintenance occurrence. Appendix 

A presents the full results. 

Table 4.13 – Case study 1 result extract, prescriptive C-check schedule. 

C-check periods 

Serial: 1161, Model: A321neo, Start Day: 98, End Day: 128, Hangar: Campinas 

Serial: 1057, Model: A320neo, Start Day: 93, End Day: 123, Hangar: Campinas 

Serial: 1036, Model: A320neo, Start Day: 71, End Day: 101, Hangar: Campinas 
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Table 4.14 – Case study 1 result extract, prescriptive A-check schedule. 

A-check periods 

Serial: 1158, Model: E195-E2, Start Day: 30, End Day: 37, Hangar: Campinas 

Serial: 1160, Model: E195-E2, Start Day: 204, End Day: 211, Hangar: Campinas 

Serial: 1157, Model: E195-E2, Start Day: 150, End Day: 157, Hangar: Campinas 

 

Table 4.15 – Case study 1 result extract, prescriptive unscheduled occurrences. 

Unscheduled maintenance 

Serial: 1024, Model: E-195, Start Day: 16, End Day: 17, Hangar: Manaus 

Serial: 1024, Model: E-195, Start Day: 41, End Day: 42, Hangar: Manaus 

Serial: 1025, Model: E-195, Start Day: 12, End Day: 13, Hangar: Manaus 

 

Comparing non-prescriptive and prescriptive C-check and A-check schedules it can be 

noted that they are slightly different as the objective function in the second case also takes into 

account the operation, trying to maximize availability, and as a consequence, it may pull back 

or push forward maintenance attempting to improve fleet availability. Appendix A presents the 

full results. Table 4.16 presents the results of the prescriptive experiment in terms of costs, 

revenue, profit, and dispatch reliability. 

Table 4.16 – Case study 1 prescriptive results in terms of total cost, total revenue, net 

profit, and dispatch reliability. 

Cost  

(USD) 

Revenue  

(USD) 

Profit  

(USD) 

Dispatch Reliability 

164.818.082,40 2.061.959.502,60 1.897.141.420,20 99,89% 
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Table 4.17 presents a comparison between the results of the two case study approaches: 

non-prescriptive and prescriptive maintenance scheduling. Key metrics analyzed include 

processing time, dispatch reliability, profit, revenue, and cost. The prescriptive approach 

requires more processing time (75,40 seconds) compared to the non-prescriptive approach 

(31,10 seconds), a difference of 44,3 seconds, representing a 142,44% increase. Dispatch 

reliability improves significantly with the prescriptive model, reaching 99,89% compared to 

73,90% in the non-prescriptive model, marking a 25,99% improvement comparable to airliners’ 

best practices162, 163. Financially, the prescriptive approach yields higher profit, revenue, and 

cost. Profit increases by $15.223.935,12 (0,81%), and revenue rises by $15.544.404,60 

(0,76%), indicating a favorable economic outcome. However, the cost also slightly increases 

by $320.469,48 (0,19%) with the prescriptive approach. This comparison highlights that while 

the prescriptive method is more computationally intensive, it enhances operational reliability 

and financial returns. 

Table 4.17 – Comparison between case study 1 results. 

Metric Non-prescriptive Prescriptive 
Difference (Prescriptive – 

non-prescriptive)  

Processing time 31 sec. 75 sec. 44 sec. (+142,44%) 

Dispatch 

reliability 
73,90% 99,89% 25,99% (+35,16%) 

Profit  $ 1.881.917.485,08 $ 1.897.141.420,20 $ 15.223.935,12 (+0,81%) 

Revenue $ 2.046.415.098,00 $ 2.061.959.502,60 $ 15.544.404,60 (+0,76%) 

Cost $ 164.497.612,92 $ 164.818.082,40 $ 320.469,48 (+0.19%) 

 

To take into account the maintenance imperfections the wiener equation has been 

implemented. Degradation due to imperfection has been calculated in terms of MTBURs as 



   113 
 
 

described in Section 4.1.4 and pseudocode 4.2.  Table 4.18 presents lists an extract of the new 

MTBURs per ATA Chapter. Full list is available on Appendix A. 

Table 4.18 – Maintenance Imperfection in Terms of New MTBURs. 

Model ATA Chapter New MTBUR 

E195-E2 21 1147,94 

E195-E2 22 875,30 

E195-E2 23 4745,62 
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4.2 Case Study 2: Hospital Public Network Epidemic Response 
 
4.2.1 Scope and Assumptions 
 

This study case is based on the historical data, provided by the Caraguatatuba city’s 

Health Department, related to more than 900 patients admitted in 56 public hospitals of São 

Paulo state during the COVID-19 pandemic of 2021, who had to be assisted with the use of 

intensive care units (ICUs). The data lists patients’ age, gender, day of admission, hospital of 

admission, duration of admission, and if the patients were deceased. An extract of this historical 

data is presented in Appendix C. The network of public hospitals considered is shown in Figure 

4.7. 

 

 Figure 4.7 – Hospital network location considered in the experiment. (Source: this 

author) 

4.2.2 Survivability Statistical Study Result 
 

Analyzing the historical data, the admission durations that should ensure the highest 

chances of survival were identified for each age group. To identify these admission durations, 

the algorithm described in the pseudocode 4.8, was used. The program begins by loading 

historical patient data from historical_data.xlsx into a data frame. Then it defines a binary 

survival variable Sid that equals 1 if a patient i survives a given duration d, and 0 otherwise. The 
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code then iterates through each gender g in set G, each age range a in set A, and each 

duration d  inset D, analyzing survival probabilities for different groups. For each combination, 

it checks if the sum of survival outcomes Sid  for that duration equals the maximum survival 

count _`5a!". If this condition is met, it calculates the probability of maximum survival b`5a"

 by dividing the maximum survival count by the total count of patients in that group. After 

completing these iterations across genders, age ranges, and durations, the program outputs the 

durations and their associated survival probabilities, allowing for the identification of time 

frames that offer the best survival chances across demographic groups. 

Constants & parameters 

• I: patients set; 
• i: patient of set I; 
• D: set of durations; 
• `: duration of set D;   
• G:  = gender set; 
• g: gender of set G; 
• A: age ranges set; 
• a: age range of set A; 
• cdefGH: maximum number of survivors within gender g and age range a; 
• gdefH: maximum survival probability corresponding at a specific duration d, age 

range a and gender g; 
• hH: patient admitted for a duration d;  

 
Variable 

Table 4.19 – Decision variables. 

Variable State Type 

Sid  • Equal to 1 if patient i survived at admission duration d 
• 0 otherwise  

Binary 

 

Pseudocode 4.8 – Case study 2: identification of the durations that offer the best chances of 

survival. 

Input: historical data 

Output: durations per gender and age that offer the biggest chance of survival  

1: historical_data_df← historical_data.xlsx ⊳	Load historical data into a data frame	
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2: Sid ←binary variable equal to 1 if patient i 

survives on duration d, 0 otherwise 
⊳ 	4?é>=>Cè	>Cé=C8è:	}:ê=@=<=A@	

3: for each g ∈ 3 ⊳	 Iterate through gender  

4:   for each a ∈ 1 ⊳	 Iterate through age ranges  

5:     for each d ∈ J ⊳	 Iterate through stations  

6:      if ∑ _!" = _`5a!"":%  Then 
⊳	 Identification of admission durations 

that offer survival best chances  

7:       b`5a" = _`5a!"/∑ D" 
⊳	 Maximum survival probability 

calculation   

8:     end for ⊳	 End of iteration through durations  

9:   end for ⊳	 End of iteration through age ranges  

10: end for ⊳	 End of iteration through gender  

11: Print best durations and probabilities  ⊳	 Print results 

 

The duration of maximal survivability is listed in Table 4.20 for each age range and 

gender. For example, male patients aged 0-4 had an optimal admission duration of 14 days with 

a probability of survival of approximately 0.9008. In contrast, female patients in the same age 

range had an optimal duration of 12 days with a probability of survival of 1. This data is critical 

for an optimization algorithm to tailor the admissions schedules toward patient survival 

maximization. The assumption is that admission duration plays a critical role in survivability 

chances, that is, there is a direct correlation between how long patients have access to health 

care and their chances of survival. This is a simplification since other factors such as the 

patient’s genetics, patients’ pre-conditions, and medical errors among others151 are not 

considered in this experiment.   
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Table 4.20 – Survival statistical analysis to identify optimal duration. 

Age range Gender Patients 
Optimal admission 

duration (days) 

Optimal probability 

of survival 

0-4 M 47 14 0.90083875 

0-4 F 36 12 1 

5-9 M 18 26 1 

5-9 F 12 15 1 

10-14 M 10 51 0.893 

10-14 F 6 3 0.893 

15-19 M 5 17 0.95966667 

15-19 F 6 7 0.893 

20-24 M 5 13 1 

20-24 F 5 9 0.893 

25-29 M 10 9 0.95966667 

25-29 F 7 8 0.893 

30-34 M 21 7 0.893 

30-34 F 15 12 0.893 

35-39 M 39 22 0.89460256 

35-39 F 27 11 0.893 

40-44 M 52 8 0.893 

40-44 F 38 8 0.893 

45-49 M 55 9 0.893 

45-49 F 35 10 0.893 

50-54 M 60 12 0.893 
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Age range Gender Patients 
Optimal admission 

duration (days) 

Optimal probability 

of survival 

50-54 F 28 10 0.95816291 

55-59 M 58 14 0.893 

55-59 F 46 36 0.95944791 

60-64 M 47 12 0.893 

60-64 F 43 10 0.893 

65-69 M 52 9 0.58 

65-69 F 37 20 0.80850123 

70-74 M 45 14 0.59851852 

70-74 F 32 14 0.81106061 

75-79 M 36 16 0.893 

75-79 F 24 7 0.893 

80-84 M 27 10 0.893 

80-84 F 33 17 0.65744108 

85-89 M 18 99 0.83448029 

85-89 F 21 24 0.80887865 

90-94 M 11 9 0.58 

90-94 F 15 8 0.58 

95-99 M 1 8 0.58 

95-99 F 2 0 0.58 

  
In conclusion, the statistical analysis provided in Table 4.20 offers insights into the 

optimal admission durations required to enhance patient survival rates. By leveraging this data, 

and with the assumption that survivability is directly related to admissions’ durations, it is 



   119 
 
 

possible to optimize admissions and resource allocation. The next Chapter will address the 

healthcare infrastructure capability and build upon the considerations related to optimal 

durations by introducing the optimization algorithm to schedule patient admissions and allocate 

healthcare resources effectively.  

 

4.2.3 Hospitals Capability 
 

Table 4.21 presents the healthcare infrastructure capabilities of four hospitals (names of 

the hospitals are preserved to ensure data privacy), detailing the availability of the critical 

resource ICU148. The complete list is available in Appendix B.  

This information is essential for understanding the capability of each hospital to handle 

patient admissions and provide adequate care, especially in scenarios involving high demand 

or emergencies such as a pandemic. 

This Table serves as a foundational element for the subsequent optimization algorithm, 

which aims to schedule patient admissions and allocate healthcare resources based on historical 

data and optimal duration insights. 

Table 4.21 – Healthcare infrastructure capability. 

Hospital ICU 

Hospital 1 15 

Hospital 2 30 

Hospital 3 41 

Hospital 4 24 
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4.2.4 Admissions Optimization 

 
This Section introduces the mathematical model used for the optimization algorithm in 

the healthcare context. The model is designed to optimize the scheduling of patient admissions 

based on available ICUs. To achieve this, the model incorporates a range of constants and 

parameters that define the system's operational constraints and objective function that 

maximizes the difference between Revenue and Cost as implemented in case study 1. These 

parameters include sets of patients and hospitals, admission periods, optimal treatment 

durations, and the availability of ICU beds. Additionally, cost factors and life expectancy 

metrics are included to ensure that the model not only optimizes resource use but also aligns 

with broader healthcare objectives which is saving lives.  

 
Constants & parameters 

• I: patients set; 
• H: hospitals set; 
• h: hospital of set H;   
• i: patient; 
• dfi: final day of admission for patient i;     
• dai: day of admission for patient i; 
• doi: optimal duration per patient i;  
• klmHI: quantity of ICUs available in the hospital h and day d; 
• (95;C64./.*0: patient yearly average salary, estimated at USD 11.000,00 per year 

[154];  
• &D:9_9aH9G#5?G6!:	life expectancy for patient i; 
• &D:9_9aH9G#5?G6.J-*.+-:	population average life expectancy, roughly equal to 75 

years [153];  
• /."K!44!),!./: cost of admission per day152, roughly equal to USD 2.170,00; 
• /,),_."K!44!),0: cost of non-admission for patient i; 
• =)72!K./0: revenue due to optimal admission for patient i; 
• =/.2-0: revenue due to late admission for patient i; 
• /)72!K./0: cost of admission when admission is on optimal date and duration for patient i; 
• //.2-0: cost of admission when admission is after optimal date and duration for patient i; 
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Decision variable 

Table 4.22 – Decision variable. 

Variable State Type 

!!"# • Equal to 1 if patient i  is admitted on day d in hospital h  
• 0 otherwise  

Binary 

 
Objective Function 
 

F@J@./01221341 =	Ä=ê:_:$ë:;<C@;í# ∗ -:Céèí=<?<AB 

 

/01# = 		U!!"# ∗ /."K!44!),!./ ∗ 4)0 +U(1 − !!"#)FKLK5678998:;8 

 

DLMNOPQR8 =U!!"# ∗ A&D:9_9aH9G#5?G6! ∗ (95;C64./.*0I  
 

DRQNS8 = 0.5 ∗ 	DLMNOPQR8 
 

=9>9?@9 =U(DLMNOPQR8 +	DRQNS8) 
 

789:;<=>:6?@;<=A@ = 0C$(D:>:@?: − FAG<) 

 
Calculations 
 

Table 4.23 presents the calculation of the life expectancy. When the age is larger than 

the average life expectancy then the logistic equation was adopted to estimate the life 

expectancy of the patient. The logistic equation, commonly used in population dynamics, is a 

mathematical model used to describe growth that starts exponentially but slows as it approaches 

a maximum value155, a behavior that fits the life expectancy variation over time.    

 

 

(4.40) 

(4.39) 

(4.38) 

(4.41) 

(4.42) 

(4.43) 
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Table 4.23 – Life expectancy calculation. 

Variable State 

L@MN
NOPNQRSTQU!

 
= Ä=ê:_:$ë:;<C@;í<T>A<U> − age if age £ Ä=ê:_:$ë:;<C@;í<T>A<U> 
 
= <U>+	V#W>_>XY>ZC<@ZB.<=>.?=	
H">(.?=AB1C==DE=FG.4FH.<=>.?=)	

  if age ³ Ä=ê:_:$ë:;<C@;í<T>A<U> 

 
 

Constraints 
 

Equation 4.44 enforces that admission must happen while constraint 4.45 enforces that 

for each admission event, the available ICUs are not exceeded. 

 
 

UUU(!!"#)
"∈%

= 0

!∈9#∈'
 

 

 

																																																UUU(!!"#)
"∈%

≤ K/q"#
!∈9#∈'

 

 

Pseudocode 

The pseudocode 4.9 presents the steps for implementing the optimization model 

focusing on a prescriptive objective function that seeks to maximize the difference between 

Revenue and Cost. The revenue equation tries to maximize the number of optimal admissions 

while the cost is related to the admission costs, increasing significantly whenever a patient is 

admitted not at the optimal date or not admitted. Here’s a breakdown of each part: 

1. Data Loading (Steps 1-3): 

a. In these steps patients' optimal admissions, survival probability, and hospitals’ 

ICU capabilities are loaded. 

 

(4.44) for each day d patient i 
and hospital h, if d < doi 

for each day d, patient i 
and hospital h 

(4.45) 
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2. Model Setup (Steps 4-5): 

a. Define a Gurobi optimization model. 

b. Define decision variables: 

i. Xidh for patient admissions. 

3. Constraints: 

a. Station Capacity Constraint (Steps 6-12): 

i. Iterate over assets (i), days (d), and stations (h) to ensure that the total 

number of patients admitted does not exceed the station's (hospital) 

capacity (ICUh). 

b. Admission cannot occur before historical data admissions (Steps 13-19): 

i. For every day, patient and hospital, admission day cannot be smaller 

than the optimal admission day which is the one recorded on the 

historical data. 

4. Cost & Revenue Calculation (Steps: 21-30) 

a. Revenue is equal to the sum of the number of patients admitted times the number 

of expected life years times the yearly average income. If the patient is admitted 

after the optimal date, revenue is half the value it would be if admission were on 

the optimal date.     

b. Cost is proportional to the number of days of admission. If a patient is not 

admitted then the cost is equal to the yearly average earnings times the life 

expectancy. 

5. Objective Function (Steps 31-32): 

a. Set the objective function to maximize the difference between Revenue and 

Cost. 
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6. Output (Step 33): 

Print results. 

Pseudocode 4.9 – Case Study 2 optimization model. 

Input:  patient admission data, ideal patient admission duration, hospitals data,  

Output: location and duration of admission 

1: admission_data← admission data ⊳	Load admission data	

2: admission_duration← admission duration ⊳	Load admission duration	

3: stations_data← hospitals_data ⊳	Load hospital data	

4: model←gp.model ⊳	Optimization start	

5: Xid ← patient_admitted(patient,days, 

hospital, binary) 
⊳	 Admission variable definition	

6: for each i ∈ I ⊳	 Iterate through patients  

7:   for each d ∈ J ⊳	 Iterate through days  

8:      for each h ∈ å ⊳	 Iterate through hospitals  

9:    ∑ ∑ ∑ (!@Aℎ)A∈C ≤ K/qAℎ@∈V+∈F	
⊳	 The number of patients cannot be larger 

than the available ICUs   

10:       end for   ⊳	 End of iteration through hospitals 

11:    end for   ⊳	 End of iteration through patients 

12: end for  ⊳	 End of iteration through days 

13: for each i ∈ I ⊳	 Iterate through patients  

14:   for each d ∈ J ⊳	 Iterate through days  

15:      for each h ∈ å ⊳	 Iterate through hospitals 

16: ∑ ∑ ∑ (!!"#)"∈% = 0!∈9#∈'  if d < doi 
⊳	 Patient admission cannot occur before 

real admission according to historical data 

17:      end for ⊳	 End hospital iteration 

18:   end for ⊳	 End day iteration 

19: end for ⊳	 End patients iteration 

20: for each i ∈ I ⊳	 Iterate through patients  

21:   for each d ∈ J ⊳	 Iterate through days  
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22:      for each h ∈ å ⊳	 Iterate through hospitals 

23:FAG< = 		∑!#$% ∗ F<$(#==#J@/.H ∗ }J1 +

∑(1 − !#$%) ∗ F@J@./01221341 
⊳	 Cost equation 

24: if }<1 = 4)0 then 
⊳	 If admission day is equal to the optimal 

day  

25:DJYC#(<?1 = ∑!#$% ∗

úÄ=ê:_:$ë:;<C@;í# ∗ -:Céèí=<?<ABù  
⊳	 Optimal revenue 

26: else if ⊳	 If admission day is not equal to the 

optimal day  

27: DRQNS8 = 0.5 ∗ 	DLMNOPQR8 ⊳	 Sub-optimal revenue 

28:   end if ⊳	 Conditional logic closing 

29: end if ⊳	 Conditional logic closing 

30: =9>9?@9 = ∑(DLMNOPQR8 +	DRQNS8) 
⊳	 Revenue is defined as the sum of 

optimal and late revenues 

31: model.setObjective(Revenue-Cost, 

GRB.MAXIMIZE) 
⊳	 Objective function definition 

32: model.optimize() ⊳	 Optimization start 

33: Print results ← 

Print_admission_recommendation 
⊳	 Admission recommendation output 

 

The optimization aims to distribute the patients’ admission across the hospitals to 

maximize the chances of survival, as shown in Table 4.24. It is important to note that if the 

admission duration assigned was optimal after the optimization, it means that the patient has 

been assigned the optimal probability of survival presented in Table 4.18.  Full algorithm results 

are presented in Appendix A, Section A.2. As previously stated, many unforeseeable factors 

play crucial roles in humans’ survivability, being survivability statistical in nature rather than 

deterministic156. It is necessary thus to evaluate survivorship using a statistical approach such 

as Monte Carlo simulation156, 157, as presented in the next Chapter.  
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Table 4.24 – Case study 2 results extract. 

Patient Gender Age 
Admitted? 

(Y/N) 

Admission 

 

Duration 

(optimal 

/sub-

optimal) 
Hospital Day 

Duration 

(days) 

31628681

7512 
F 1 Y 1 96 12 Optimal 

31624644

8213 
M 19 Y 1 37 17 Optimal 

31628680

5191 
M 79 N - - - - 

 

 

4.2.5 Monte Carlo Simulation for Survivorship Estimation 
 

To evaluate the most probable quantity of surviving patients the Monte Carlo approach 

has been implemented, due to the statistical nature of survivorship156, 157. Parameters used, and 

pseudocode are presented below. A value (seed) used to initialize the random number generator 

(RNG) was adopted to ensure reproducibility.      

Parameters 
 

N_simulations: 100.000 

Seed: 42 
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Pseudocode 
 

The pseudocode 4.10 presents the steps for implementing the Monte Carlo model 

focusing. Here’s a breakdown of each part 

 1. Load Input Data (Step 1) 

 • Load the dataset into a data frame using read_excel. 

 2. Set Monte Carlo Simulation Parameters (Steps 2 - 3) 

 • Define the number of simulations. 

 • Set a random seed for reproducibility. 

 3. Run Monte Carlo Simulation (Steps 4 - 6) 

 • For each iteration: 

 • Generate random numbers for each individual. 

 • Compare random numbers to survival probabilities to determine survivors. 

 • Count the number of survivors and store the result. 

 4. Analyze Simulation Results (Step 7) 

 • Compute the average number of survivors across all simulations. 

 • Generate the survival probability distribution as a frequency Table. 

 5. Print Summary (Step 8) 

 • Display the average number of survivors. 

 • Display the top entries of the survival probability distribution 
 
 

Pseudocode 4.10 – Case study 2 Monte Carlo simulation to evaluate survivors number. 

Input:  patient list and their admission cure probability  

Output: most probable quantity of survivors 

1: survivorship_data← list of patients and their 

probability of survival 
⊳	Load survivorship probability data	

2: n_simulations = 100000 ⊳	Number of simulations	

3: np.random.seed(42) 
⊳	 Calling of random function with seed 

equal to 42	

4: for each simulation  ⊳	 Iterate through patients  
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5: survived = np.random.rand(len(serials)) < 

survival_chances 
⊳	 Condition for survival  

6: survival_counts.append(survived.sum()) ⊳	 Count the number of survivors  

7: average_survivors = 

np.mean(survival_counts) 
⊳	 Mean calculation of all results 

8: Print results ← Print_mean and most probable 

values 
⊳	 Admission recommendation output 

 
Table 4.25 presents the results in terms of the most probable survivor quantities. It is 

possible to note that the most probable value is 706 while the overall mean is 707 people.  

 
Table 4.25 – Monte Carlo simulation most probable number of survivals. 

Survivors 

707 

 
 
4.2.6 Results 
 

Survivability in the health industry depends on many factors, ranging from patient 

existing pre-condition, genetics to drug availability, efficient medical techniques, infrastructure 

and order of arrival at the hospital. However, for this experiment, to evaluate the initial 

hypothesis, the following assumptions was adopted: the optimal admission duration maximizes 

survivorship.  

Thus, the prescriptive algorithm implementation was focused on recommending the best 

course of action in terms of patients’ allocation to hospitals’ ICUs and admissions durations, 

seeking to maximize the patients ‘community survivorship, without considering order of arrival 

and patients ‘possible preconditions. Table 4.26 shows that the prescriptive approach 

potentially might be more effective under the experiment assumptions, indicating that more 
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people could be assisted for longer than the historical data showed, increasing the probability 

of survivorship. 

Table 4.26 – Case study 2 potential results. 

Indicator Historical data Prescriptive approach 

Survivors 429 707 

 

Table 4.27 presents the results in terms of Revenue, Cost, and Profit comparing the 

values obtained considering the evaluated cost of life losses, according to average yearly salary 

and average life expectancy, and the values obtained without considering these losses. 

Table 4.27 – Case study 2 results in terms of revenue, cost, and difference between 

revenue and cost. 

Attributes 
Not considering loss of lives 

as a cost 

Considering loss of lives as 

a cost 

Revenue (USD) 3.730.496.000,00 3.734.192.000,00 

Cost (USD) 427.344.610,00 7.508.602.974.457,81 

Revenue – Cost (USD) 3.303.151.390,00 -7.504.868.782.457,81 

Processing time (seconds) 232,86 8104,64 

Survivorship (persons) 707 707 

 

Although the computational time for the approach that considers loss of lives as cost is 

much longer in comparison to the approach that does not consider it, both approaches yield the 

same results, meaning that the constraint of ICU beds is insurmountable even when the costs 

rise almost exponentially.  
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The prescriptive approach, which considers operation and maintenance, in this 

experiment years of life versus costs of healthcare, offers promising results and, under the 

assumption of the study, a potential increase in survivorship. 

 

 
4.3 Case Study 3: Regional Airliner Operation Scenario – 14 Days Window 

 
4.3.1 Scope and Assumptions 

 
For this case all the operational assumptions in terms of fleet typology, number of 

aircraft, flights, stations, and maintenance capability were adopted from case study 1. In this 

experiment, however different capabilities of repairing systems were randomically distributed 

among the 150 plus stations, while full-time equivalents (FTE) and GSE were also assigned to 

each base. The repairing capability is in terms of readiness to repair systems per ATA Chapter, 

allowing the prescriptive recommendation and holistic analysis mentioned in Chapter 3, Section 

3.2.3. Time period considered is 14 days to test the algorithm performance in a tactical 

operational context. 

 

4.3.2 Maintenance Capability 
 

As mentioned in Section 4.3.1, the depot and intermediate maintenance hangars and 

their characteristics mentioned in Section 4.1.3 were kept unchanged. For the repair capabilities 

scattered through all 150 plus hubs’ network, repair capabilities per ATA Chapter were 

randomically distributed to test the scenario described in Section 3.2.3. The full list of 

distribution per ATA Chapter and Hub is available in Appendix D. 

Building on the discussion of maintenance capabilities across various hangar locations, 

it is essential to highlight the role of Ground Support Equipment (GSE). Table 4.28 details the 



   131 
 
 

consolidation of GSE into specialized kits according to maintenance technicians' areas of 

expertise: airframe, powerplant, and avionics. This consolidation ensures that each hangar is 

equipped with the necessary tools and equipment tailored to the specific maintenance tasks 

performed at that location. 

Table 4.28 – Consolidation of GSE according to the airframe, powerplant, and 

avionics ATA Chapter. 

Airframe 

maintenance kit 

ATA Chapters 

Powerplant maintenance  

kit ATA Chapters 

Avionics maintenance  

Kit ATA Chapters 

21: air conditioning 49: auxiliary power unit 22: auto flight 

25: equipment 70: standard practices - engine 23: communications 

28: fuel 71: power plant 24: electrical power 

30: ice & rain 

protection 
72: engine 31: instruments 

32: landing gear 73: engine fuel and control 34: navigation  

33: lights 74: ignition 44: cabin systems 

35: oxygen 75: air 
45: central maintenance 

computer 

36: pneumatic 76: engine controls 46: information system 

38: water/waste 77: engine indicating   

52: doors 78: exhaust   
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Airframe 

maintenance kit 

ATA Chapters 

Powerplant maintenance  

kit ATA Chapters 

Avionics maintenance  

Kit ATA Chapters 

53: fuselage 79: oil   

54: nacelle/pylons 80: starting  

55: stabilizers   

56: windows   

57: wings   

 
To ensure that maintenance operations are conducted efficiently, it is crucial to consider 

the availability and allocation of maintenance personnel. The effectiveness of the GSE and the 

maintenance capabilities of each hangar is inherently dependent on the skilled technicians and 

supervisors who perform the maintenance tasks. Table 4.29 provides an overview of the 

estimated team sizes and skill availability at depot hangars to perform C-check maintenance for 

each aircraft model. The Table assumes three shifts of 8 hours each, operating 7 days a week. 

It categorizes the team members into four key roles: supervisor, powerplant technician, airframe 

technician, and avionics technician in alignment with FAA certifications150. 

For instance, for the Airbus A320neo, each shift requires 0.67 supervisors, 5 powerplant 

technicians, 6 airframe technicians, and 5 avionics technicians. The Embraer E195-E2 has 

similar requirements, reflecting the standardized approach to staffing across different aircraft 

models. Larger aircraft, such as the Airbus A330-900 and A350-900, require more extensive 

teams, with each shift needing 1 supervisor, 14 powerplant technicians, 15 airframe technicians, 

and 14 avionics technicians. 
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  Table 4.29 – Daily estimated technicians and skills needed to perform C-check. 

Aircraft 

C-check maintenance team members' skills and quantities per day 

per shift 

Supervisor Powerplant Airframe Avionics  

A320neo 0,67 5 6 5 

E-195 0,67 5 6 5 

ATR-72-600 0,67 5 6 5 

Cessna 208B 0,5 2 2 2 

E195-E2 0,67 5 6 5 

A321neo 0,67 5 6 5 

A330-900 1 14 15 14 

A330-200 1 14 15 14 

A350-900 1 14 15 14 

 
 

Table 4.30 outlines the required personnel for conducting intermediate checks, which 

are also assumed to be performed in three shifts of 8 hours each, operating 7 days a week. For 

all aircraft models, each shift requires 1 supervisor, 2 powerplant technicians, 2 airframe 

technicians, and 2 avionics technicians. This standardized staffing ensures that intermediate 

maintenance tasks are consistently executed with the necessary expertise, allowing for timely 

and effective upkeep of the fleet. 

   Table 4.30 – Daily team members and skills needed to perform A-checks. 
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Aircraft 
A-check team members' skills and quantities per day per shift 

Supervisor Powerplant Airframe Avionics  

All models 1 2 2 2 

 
Table 4.31 specifies the team compositions needed for organizational and corrective 

maintenance activities. Assuming to be carried out in two shifts of 8 hours each, operating 7 

days a week. Similar to intermediate checks, each shift requires 1 supervisor, 2 powerplant 

technicians, 2 airframe technicians, and 2 avionics technicians for all aircraft models. This 

configuration ensures that the routine and corrective maintenance tasks are adequately staffed, 

providing the flexibility and capability to address both scheduled and unscheduled maintenance 

needs. 

By clearly defining the required team compositions for different maintenance activities, 

these tables facilitate effective resource modeling and optimization by the prescriptive 

algorithm.  

   Table 4.31 – Daily team members and skills needed to perform unscheduled 

maintenance. 

Aircraft 

Organizational and corrective maintenance team members' skills and 

quantities per day per shift 

Supervisor Powerplant Airframe Avionics  

All models 1 2 2 2 

 

 

 

 



   135 
 
 

4.3.3 Aircraft Maintenance Requirement 

 

Table 4.32 presents the estimated required maintenance FTE needed to provide C-check 

and A-check maintenance for each aircraft model. Values were validated with industry expert 

as data is not publicly shared by OEMs. 

   Table 4.32 – Aircraft maintenance check duration and estimated FTE needed.  

Aircraft 

Check  

A C 

Duration Labor  Duration Labor  

(days) (FTE/day) (days) (FTE/day) 

A320neo 7 100 30 400 

E-195 7 100 30 400 

ATR-72-600 7 100 30 400 

Cessna 208B 5 30 20 156 

E195-E2 7 100 30 400 

A321neo 7 100 30 400 

A330-900 7 250 30 1056 

A330-200 7 250 30 1056 

A350-900 7 250 30 1056 
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Additionally, a set of maintenance tasks per each model and ATA chapter were created 

to serve as input for the maintenance prescription. As presented in Table 4.33 to each task were 

assigned an ID, execution time in hours, and FTE – powerplant, airframe or avionics - to be 

deployed. Tasks’ descriptions and attributes were validated by industry experts, since related 

publicly available data is very limited. 

   Table 4.33 – Aircraft maintenance C-check tasks estimated FTE needed.  

Model ATA Task 
Task 

ID 

Execution 

Time (hs) 

Powerplant 

FTE 

Airframe 

FTE 

Avionics 

FTE 

A330-

900 
21 

Operational 

Check 
21.12 1 0 32 0 

A330-

900 
21 

Component 

Testing and 

Replacement  

21.13 1 0 32 0 

A330-

900 
21 

Calibration and 

Adjustment 
21.14 1 0 32 0 

A330-

900 
21 

Filling out 

Documentation 
21.15 1 0 1 0 

A330-

900 
21 

Component 

Testing and 

Replacement  

22.12 1 0 0 128 

A330-

900 
21 

Software 

Update 
22.14 1 0 0 128 

A330-

900 
21 

Cable and 

Connection 

Checks 

22.15 1 0 0 128 
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Full task list is available in Appendix D. 

The following Section presents the mathematical model underpinning the optimization 

algorithm used in the Smart Optimization Framework for PsM. This model is designed to 

optimize the allocation of maintenance resources, scheduling of maintenance activities, and 

overall operational efficiency. By incorporating the constraints identified in this Section, 

parameters, and objective functions, the model aims to provide a robust and scalable solution 

for managing maintenance operations across diverse asset types, including aircraft and human 

health systems. 

 

4.3.4 Mathematical Model and Optimization 

 

The mathematical model integrates multiple elements, such as the availability of 

maintenance personnel, ground support equipment (GSE), and maintenance facilities. It 

accounts for different maintenance levels—organizational, intermediate, and depot—and their 

respective resource requirements. Additionally, the model considers predictive maintenance 

capabilities to enhance decision-making and minimize downtime. 

The specifics of the optimization algorithm are detailed in terms of the parameters, 

constraints, and objective functions adopted that form the core of the model. The algorithm was 

implemented on 3 phases: 

• Phase 1: C-check tasks were assigned and scheduled to each day at each Depot 

station according to slot, FTE and GSE availability. 

• Phase 2: A-check tasks were assigned and scheduled according to FTE 

availability at each Intermediate or Depot base. 
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• Phase 3: For unscheduled maintenance, flights were diverted (or not) to specific 

stations according to the type of failure and FTE availability at the destiny 

station. Unscheduled maintenance task and FTE were also assigned. 

Constants & parameters 

• F: fleet size; 
• Acftpayload = number of seats; 
• rstsuvsWXY_ZX[\= average ticket price; 
• wxxvyeXhzuY[\G]= average fleet aircraft occupation ratio;   
• Flightday = number of flights per day; 
• Hd: set of available hangar slots at each day d; 
• h: hangar slot; 
• D: number of operational days; 
• i: aircraft of the fleet F; 
• d: day of the period D; 
• dA: day in which A-check should be scheduled according to the interval k^;   
• dB: day in which unscheduled maintenance should be executed according to operation 

simulation results; 
• dC: day in which C-check should be scheduled according to the interval k_;  
• K1: A-check interval; 
• K5: C-check interval; 
• /3.4-/!,-1: daily maintenance cost when A-check maintenance occurs in the baseline 

interval;  
• /-.*/01: daily maintenance cost when A-check maintenance occurs before the 

baseline;  
• //.2-1: daily maintenance cost when A-check maintenance occurs after the baseline; 
• /3.4-/!,-6: daily unscheduled maintenance cost when maintenance is executed on the 

day of the event; 
• //.2-6: daily unscheduled maintenance cost when maintenance is executed later than 

1 day after the event;  
• /3.4-/!,-5: daily maintenance cost when C-check maintenance occurs in the baseline 

interval;  
• /-.*/05: daily maintenance cost when C-check maintenance occurs before the 

baseline;  
• //.2-5: daily maintenance cost when C-check maintenance occurs after the baseline; 
• L1: number of A-check intervals in the period D considered;  
• L5: number of C-check intervals in the period D considered; 
• 4/.2-": day after dA in which A-check is scheduled; 
•  4/.2-$: day after dB in which unscheduled maintenance is scheduled; 
• 4/.2-#: day after dC in which C-check is scheduled; 
• 4-.*/0": day in which A-check is scheduled, before dA; 
• 4-.*/0#: day in which C-check is scheduled, before dC; 
• EA: quantity of days before 41 in which A-check is scheduled; 
• EC: quantity of days before 45 in which C-check is scheduled; 



   139 
 
 

• FA: quantity of days after 41 in which A-check is scheduled; 
• FB: quantity of days after 46 in which unscheduled maintenance occurs; 
• FC: quantity of days after 45 in which C-check is scheduled; 
• S: set of stations (or hangars) S; 
• s: station or hangar of the set of stations S; 
• FTEair,S: airframe FTE available at station s; 
• FTEpow,S: powerplant FTE available at station s; 
• FTEavi,S: avionics FTE available at station s; 
• FTEair,Needed_ata,i: airframe FTE needed for each system Ata Chapter and aircraft i; 
• FTEair,Needed_ata,i: powerplant FTE needed for each system Ata Chapter and aircraft i; 
• FTEair,Needed_ata,i: avionics FTE needed for each system Ata Chapter and aircraft i;  
• GTEair,S: airframe GTE available at station s; 
• GTEpow,S: powerplant GTE available at station s; 
• GTEavi,S: avionics GTE available at station s; 
• GTEair,Needed_ata,i: airframe GTE needed for each system Ata Chapter and aircraft i; 
• GTEair,Needed_ata,i: powerplant GTE needed for each system Ata Chapter and aircraft i; 
• GTEair,Needed_ata,i: avionics GTE needed for each system Ata Chapter and aircraft i;  

 
 
 

Decision variables 

   Table 4.34 – Decision variables.  

Variable State Type 

!!"# • Equal to 1 if A-check is scheduled for aircraft i on day d 
and hangar slot h 

• 0 otherwise  

Binary 

(!"# • Equal to 1 if unscheduled maintenance is executed for 
aircraft i on day d and hangar slot h 

• 0 otherwise 

Binary 

<!"# • Equal to 1 if C-check is scheduled for aircraft i on day d 
and hangar slot h 

• 0 otherwise  

Binary 

hidO • Equal to 1 if flight is assigned for aircraft i on day d and 
hangar slot h 

• 0 otherwise  

Binary 

 
Objective Function 
 

/01# = 		∑!!"# ∗ /-.*/01 ∗ 4561_89:0;91 +∑!!"# ∗ //.2-1 ∗ 4561_5:#9;1 +
∑!!"# ∗ /3.4-/!,-1 +	∑<!"# ∗ /-.*/05 ∗ 4561_89:0;95 + ∑<!"# ∗ //.2-5 ∗ 4561_5:#9;5 +
∑<!"# ∗ /3.4-/!,-5 + 
 ∑(!"# ∗ /3.4-/!,-6 + ∑(!"# ∗ //.2-6 ∗ 4561_5:#9;6 
 
=9>9?@9 = ∑7O[ℎ ∗ A	=9>9?@97-*_4-.2 ∗ BCDEℎ#".0 ∗ FG:#7.0/)." ∗ )GG@H5#D0?*.2!)I!!

  
 

(4.46) 

(4.47) 
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789:;<=>:6?@;<=A@ = 0C$(D:>:@?: − FAG<) 

 

Calculations 
 

Equations 4.49 and 4.50 define that d] and d^ are multiples of the respective A-check 

and C-check intervals. Equations 4.51 and 4.52 determine the number of intervals, which is 

given by the division between D and the interval IA for A-check and IC for C-check. Equations 

4.53, 4.54, and 4.55 define dlate while equations 4.56 and 4.57 present the calculation for dearly 

since, if no slots are available, maintenance may be pushed back or pulled forward. Equations 

4.58 and 4.59 calculate the number of days in which A-check is scheduled before or after dA. 

Similarly, equations 4.60 and 4.61 calculate the number of days in which the C-check is 

scheduled before or after dC. Equation 4.62 calculates delay in the unscheduled maintenance.  

 

	41 = ? × K1	| ?: 1 à L1, n ∈ Integer 

 
45 = ? × K5 	| ?:  1 à L5, n ∈ Integer 

 

L1 ≥
%
9"
, L1 ∈ K?#9E9;, L1 > 0  

 

L5 ≥
%
9#
, L5 ∈ K?#9E9;, L5  > 0 

 

41 < 4/.2-" ≤	41 +	K1 − 	F	 

 
41 −	K1 + 	F ≤ 4-.*/0" <	41	 

 

46 < 4/.2-$ ≤ 46 +	K6 − 	R 

 

45 < 4/.2-# ≤ 45 +	K5 − 	/ 

 

45 −	K5 + 	/	 ≤ 4-.*/0# <	45 	 

 

	S1 =	41 − 4-.*/0" 
 

(4.48) 

(4.49) 

(4.55) 

for }9 > }><A?B+ 

(4.52) 

(4.57) 

(4.56) 

(4.58) 

(4.53) 

(4.54) 

(4.51) 

(4.50) 
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																																																					B1 =	4/.2-" −	41 

 
 

S5 =	45 − 4-.*/0#  
 

 
B5 =	4/.2-# −	45  

 
 

B6 =	4/.2-$ −	46 

 

Constraints 
 

A key logistical consideration is the limitation imposed by the number of available 

maintenance slots described in Equation 4.63. For any given day d, the number of aircraft slated 

to receive maintenance — be it an A-check, C-check, or unscheduled — must not exceed the 

number of hangar slots available, denoted by H. This stipulation enforces a cap on the maximum 

number of aircraft undergoing maintenance at any time, ensuring that the physical space 

available is not exceeded. Equations 4.64 and 4.65 enforce that for each aircraft i on each day 

d, the cumulative number of A-checks and C-checks conducted is bound by a non-negotiable 

OEM requirement. These requirements, denoted as KA,  KC, serve as the minimum thresholds 

for A-checks and C-checks that must be performed to uphold the safety and performance 

standards. This constraint not only ensures the airworthiness of the fleet but also reinforces the 

commitment to operational excellence and regulatory compliance.  Constraints 4.66, 4.67 and 

4.68 enforce that for each maintenance event the available FTE are not exceeded while 

constraints 4.69, 4.70 and 4.71 enforce that available GSE are not exceeded. Pseudocodes 4.11 

and 4.12 presents the algorithm implementation. 

 
UUU(!!"# +	(!"# + <!"#)

"∈%
≤ ."

!∈&#∈'
 

 

for 4/.2-" > 41 (4.59) 

(4.60) for 45 > 4-.*/0# 
 

for 4/.2-# > 45 (4.61) 

(4.63) for each day d, 
aircraft i and slot h  
 

for 4/.2-$ > 46 (4.62) 



   142 
 
 

													UUU!!"#
"∈%

≥ L1
!∈&#∈'

 

 

UUU<!"#
"∈%

≥ L5
!∈&#∈'

 

           
											UUU((!"# + !!"# + <!"#) ∗ 625QO_,aSS[S[_QNQ,O ≤

"∈%
625QO_,b

!∈&#∈'
 

 
														UUU((!"# + !!"# + <!"#)

"∈%
∗ 625MLc,aSS[S[_QNQ,O ≤ 625MLc,b

!∈&#∈'
 

 
														UUU((!"# + !!"# + <!"#) ∗ 625QdO,aSS[S[_QNQ,O

"∈%
≤ 625QdO,b

!∈&#∈'
 

 
												UUU((!"# + !!"# + <!"#) ∗ 345QO_,aSS[S[_QNQ,O ≤

"∈%
345QO_,b

!∈&#∈'
 

 

																									UUU((!"# + !!"# + <!"#) ∗ {_S7)`,b--"-"_.2.,! ≤
"∈%

{_S7)`,c
!∈&#∈'

 

 

																										UUU((!"# + !!"# + <!"#) ∗ {_S.J!,b--"-"_.2.,! ≤
"∈%

{_S.J!,c
!∈&#∈'

 

 

 
Pseudocode 4.11 is summarized below: 
 
 

1. Model Initialization (Step 5): an optimization model (gp.model) is created to 

structure the constraints and objectives. 

2. Define Decision Variables (Steps 6–8): 

• Xidh: binary variable representing whether an A-check is scheduled for an asset i 

on a specific day d and slot h. 

• Yidh: binary variable for unscheduled maintenance on asset i for day d and slot h. 

• Zidh: binary variable for a C-check on asset i for day d and slot h. 

 

(4.64) for each day d, 
aircraft i and slot h  

(4.65) for each day d, 
aircraft i and slot 
h  
 

(4.66) 

(4.67) 

(4.68) 
for each 
d and i  
 

for each 
d and i  
 

(4.69) 

for each 
d and i  
 

for each 
d and i  
 

(4.70) 

(4.71) 

for each day 
d, aircraft i 
and slot h  
 
for each day 
d, aircraft i 
and slot h  
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3. Iterate Through Assets and Days (Steps 9–11) 
 

4. Constraints: 
 

i. Station Slot Constraint (Step 12): The total number of maintenance tasks 

(X, Y, Z) across all assets and days must not exceed the total available station 

slots (H). 

ii. Minimum Events Constraint (Steps 13–14): Ensure a minimum number 

of C-checks (KC) and A-checks (KA) are performed as required. 

 
5. Ground Support Equipment (GSE) Constraints (Steps 15–17): Ensure GSE 

resources (airframe, powerplant, and avionics) are not exceeded at any maintenance 

station (S). 

 
6. Technician (FTE) Constraints (Steps 18-20): ensure the FTE personnel (airframe, 

powerplant, and avionics) are not exceeded. This constraint accounts for all tasks 

across days and assets. 

	
7. Cost Function Definition (Step 24-30): The cost function is a summation of 

maintenance costs associated with early, baseline, and late actions for A-checks and 

C-checks and unscheduled maintenance occurrence. 

 
8. Objective Definition (Steps 31): the optimization model defines the objective 

function as the minimization of total maintenance cost (min(Cost)),  

 
9. Solver Invocation (Steps 32): The model is passed to the Gurobi optimizer 

(gurobi(model)), which processes the defined constraints and objectives to find the 

optimal solution. 
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10. Post-Optimization Calculations (Steps 33): the results from the solver are used to 

compute metrics such as dispatch reliability (Availability) to measure fleet readiness 

after the optimization. 

 
11. Output Results Printing (Steps 34–37). 

 

Pseudocode 4.11 – Case study 3: non-prescriptive objective function. 

Input:  operational data, maintenance data, hangars/stations data, fleet data 

Output: fleet availability, operational revenue, maintenance cost and revenue for the non-

prescriptive objective function 

1: operational_data← operational data ⊳	Load operational data	

2: fleet_data← fleet data ⊳	Load fleet data	

3: maintenance_data← maintenance_data ⊳	Load maintenance data	

4: stations_data← stations_data ⊳	Load hangar data	

5: model←gp.model ⊳	Optimization start	

6: Xidh ←a_check(days, serial, slot binary) ⊳	A-check variable definition	

7: Yidh ←unscheduled(days, serial, slot binary) 
⊳	 Unscheduled maint. variable 

definition 

8: Zidh ←c_check(days, serial, slot binary) ⊳	C-check variable definition 

9: for each i ∈ I ⊳	 Iterate through assets  

10:   for each d ∈ J ⊳	 Iterate through days  

11:     for each h ∈ å ⊳	 Iterate through slots 

12:    ∑ ∑ ∑ (!+(+<)A∈C ≤ .@∈Eℎ∈F ⊳	 Station slot constraint  

13:  	∑ ∑ ∑ <@AℎA∈C ≥ LD@∈Eℎ∈F ⊳	 C_check minimum events constraint 

14:  	∑ ∑ ∑ !!"#"∈% ≥ L1!∈&#∈' ⊳	 A_check minimum events constraint 

15: ∑ ∑ ∑ (&!"K + #!"K + 3!"K) ∗ -./ ≤"∈$ -./L!M,O!∈*K∈)  ⊳	 Airframe GSE cannot be surpassed 

16: ∑ ∑ ∑ (&!"K + #!"K + 3!"K) ∗ -./ ≤"∈$ -./PQR,O!∈*K∈)  ⊳	 Powerplant GSE cannot be 

surpassed 

17:	∑ ∑ ∑ (&!"K + #!"K + 3!"K) ∗ -./ ≤"∈$ -./LS!,O!∈*K∈)  ⊳	 Avionics GSE cannot be surpassed 

18:	∑ ∑ ∑ (&!"K + #!"K + 3!"K)01/"∈$ ≤ 01/L!M,O!∈*K∈)  ⊳	 Airframe FTE cannot be surpassed 
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19:	∑ ∑ ∑ (&!"K + #!"K + 3!"K)01/"∈$ ≤ 01/PQRM,O!∈*K∈)  
⊳	 Powerplant FTE cannot be 

surpassed 

20:∑ ∑ ∑ (&!"K + #!"K + 3!"K)01/"∈$ ≤ 01/LS!QT,O!∈*K∈)  ⊳	 Avionics FTE cannot be surpassed 

21:       end for ⊳	 End iteration through slots 

22:     end for ⊳	 End iteration through assets  

23:  end for ⊳	 End iteration through days  

24: for each i ∈ I ⊳	 Iterate through assets  

25:   for each d ∈ J ⊳	 Iterate through days  

26:     for each h ∈ å ⊳	 Iterate through slots 

27: /01# = 		∑!!"# ∗ /-.*/01 ∗ 4561_89:0;91 +

∑!!"# ∗ //.2-1 ∗ 4561_5:#9;1 +∑!!"# ∗ /3.4-/!,-1 +

	∑<!"# ∗ /-.*/05 ∗ 4561_89:0;95 +∑<!"# ∗ //.2-5 ∗

4561_5:#9;5 +∑<!"# ∗ /3.4-/!,-5 +∑(!"# ∗ /3.4-/!,-6 

+ ∑(!"# ∗ //.2-6 ∗ 4561_5:#9;6 

⊳	 Objective function definition 

28:     end for ⊳	 End iteration through slots 

29:   end for  ⊳	 End iteration through assets  

30: end for ⊳	 End iteration through days  

31: ObjectiveFunction ← min(Cost) 																														⊳	 Objective definition 

32: gurobi(model) ⊳	 Solver definition 

33: Availability ← Dispatch_reliability 
⊳	 Post-optimization availab. 

calculation 

34: Print results ← Print_availability ⊳	 Availability ouput 

35: Print results ← Print_maintenance_cost ⊳	 Maintenance cost output  

36: Print results ← Print_revenue ⊳	 Revenue output 

37: Print results ← Print_maintenance_schedule ⊳	 Maintenance schedule output 

 
Pseudocode 4.12 is similar to pseudocode 4.11. The difference is in the objective 

function (step 29) which is prescriptive trying to maximize the difference between revenue and 

cost. The step 25 defines the equation revenue as being dependent on the operation variable 7#$ 

and the revenue per flight. 
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Pseudo-code 4.12 – Case study 3: prescriptive objective function. 

Input:  operational data, maintenance requirements, hangars data, fleet data 

Output: fleet availability, operational revenue, maintenance cost and profit for the prescriptive 

objective function  

1: operational_data← operational data ⊳	Load operational data	

2: fleet_data← fleet data ⊳	Load fleet data	

3: maintenance_data← maintenance_data ⊳	Load maintenance data	

4: stations_data← stations_data ⊳	Load hangar data	

5: model←gp.model ⊳	Optimization start	

6: Xidh ←a_check(days, serial, slot, binary) ⊳	A-check variable definition	

7: Yidh ←unscheduled(days, serial, slot, binary) 
⊳	 Unscheduled maint. variable 

definition 

8: Zidh ←c_check(days, serial, slot, binary) ⊳	C-check variable definition 

9: Oidh ←Flight_assigned(days, serial, slot, binary) ⊳	Flight variable definition 

10:	∑ ∑ ∑ (&!" + #!" + 3!")01/"∈$ ≤ 01/L!M,O!∈*K∈)  ⊳	 Airframe FTE cannot be surpassed 

11:	∑ ∑ ∑ (&%&+ + .%&+ + "%&+)/01&∈( ≤ /011234,6%∈*+∈,  
⊳	 Powerplant FTE cannot be 

surpassed 

12:∑ ∑ ∑ (&!"K + #!"K + 3!"K)01/"∈$ ≤ 01/LS!QT,O!∈*K∈)  ⊳	 Avionics FTE cannot be surpassed 

13: for each i ∈ I ⊳	 Iterate through assets  

14:   for each d ∈ J ⊳	 Iterate through days  

15:     for each h ∈ å ⊳	 Iterate through slots 

16:    ∑ ∑ ∑ (!+(+<)A∈C ≤ .@∈Eℎ∈V ⊳	 Station slot constraint  

17:  	∑ ∑ ∑ <@AℎA∈C ≥ LD@∈EK∈) ⊳	 C_check minimum events constraint 

18:  	∑ ∑ ∑ !!"#"∈% ≥ L1!∈&ℎ∈V ⊳	 A_check minimum events constraint 

19:  ∑ ∑ ∑ (!@Aℎ +	)@Aℎ)A∈C = 1@∈Eℎ∈V ⊳	 No flight if a_check happens 

∑ ∑ ∑ ((@Aℎ +	)@Aℎ)A∈C = 1		@∈Eℎ∈V  : 20 
⊳	 No flight if unscheduled maint. 

happens 

21:   ∑ ∑ ∑ (<@Aℎ +	)@Aℎ)A∈C = 1			@∈Eℎ∈V  ⊳	 No flight if c_check happens 

22: ∑ ∑ ∑ (&86ℎ + #86ℎ + 386ℎ) ∗ -./ ≤6∈W -./58X,Y8∈Zℎ∈V  ⊳	 Airframe GSE cannot be surpassed 

23:∑ ∑ ∑ (&!"K + #!"K + 3!"ℎ) ∗ -./ ≤"∈$ -./PQR,O!∈*K∈)  
⊳	 Powerplant GSE cannot be 

surpassed 
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24:	∑ ∑ ∑ (&!" + #!" + 3!") ∗ -./ ≤"∈$ -./LS!,O!∈*K∈)  ⊳	 Avionics GSE cannot be surpassed 

25:       end for ⊳	 End slots iteration 

26:     end for ⊳	 End day iteration 

27:  end for ⊳	 End assets iteration 

28: for each i ∈ I ⊳	 Iterate through assets  

29:  for each d ∈ J ⊳	 Iterate through days  

30:    for each h ∈ å ⊳	 Iterate through slots  

31: =9>9?@9 = ∑7O[ℎ ∗ A	=9>9?@97-*_4-.2 ∗

BCDEℎ#".0 ∗ FG:#7.0/)." ∗ )GG@H5#D0?*.2!)I!!
  

⊳	 Revenue definition 

32: /01# = 		∑!!"# ∗ /-.*/01 ∗ 4561_89:0;91 +

∑!!"# ∗ //.2-1 ∗ 4561_5:#9;1 +∑!!"# ∗ /3.4-/!,-1 +

	∑<!"# ∗ /-.*/05 ∗ 4561_89:0;95 +∑<!"# ∗ //.2-5 ∗

4561_5:#9;5 +∑<!"# ∗ /3.4-/!,-5 +∑(!"# ∗ /3.4-/!,-6 

+ ∑(!"# ∗ //.2-6 ∗ 4561_5:#9;6    

⊳	 Cost definition 

33:     end for ⊳	 End iteration through slots 

34:   end for ⊳	 End iteration through assets  

35: end for ⊳	 End iteration through days  

36: ObjectiveFunction ← max(Rev-Cost) ⊳	 Objective definition 

37: gurobi(model) ⊳	 Solver definition 

38: Availability ← Dispatch_reliability 
⊳	 Post-optimization availab. 

calculation 

39: Print results ← Print_availability ⊳	 Availability ouput 

40: Print results ← Print_maintenance_cost ⊳	 Maintenance cost output  

41: Print results ← Print_revenue ⊳	 Revenue output 

42: Print results ← Print_maintenance_schedule ⊳	 Maintenance schedule output 

 
The next section discusses the results of the third case study, focusing on performance 

metrics in both prescriptive and non-prescriptive scenarios. 
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4.3.5 Results 
 

This section presents the results of the experiment. Figure 4.13 depicts an extract of the 

prescription provided by the algorithm. The outputs highlight the maintenance 

recommendations for an ATR-72-600 aircraft with serial number 1093, specifically for C- 

Check. It advises executing two tasks on day 193 at the Pampulha maintenance facility. Task 

21.12, an Operational Check, requires the use of a 21.2ATR air conditioning service cart, with 

12 Airframe FTEs allocated, while no Avionics or Powerplant FTEs are needed. Similarly, Task 

21.13, which involves Component Testing and Replacement, also requires 12 Airframe FTEs 

and no Avionics or Powerplant FTEs, using 21.3ATR Environmental Control System (ECS) 

testers. These recommendations ensure optimal resource allocation and adherence to 

maintenance requirements, leveraging specific Ground Support Equipment (GSE) for efficient 

task execution. Full list of recommendation for C-check, A-check and unscheduled 

maintenance are available on Appendix D.  

 

 Figure 4.13 – Maintenance task prescriptive recommendation for C-check. (Source: 

this author) 

Focused on performance metrics across both prescriptive and non-prescriptive 

scenarios, for each simulation, it is presented solver execution time, availability, revenue gains, 

and maintenance costs. Table 4.35 presents the results.  

Serial: 1093
Model: ATR-72-600
Maintenance: Check C
Recommendation:

Execute Task 21.12 (Operational Check) on day 193 in Pampulha -
Avionics FTE expended: 0
Airframe FTE expended: 12
Powerplant FTE expended: 0
GSE: 21.2ATR Air conditioning service cart

Execute Task 21.13 (Component Testing and Replacement ) on day 193 in Pampulha -
Avionics FTE expended: 0
Airframe FTE expended: 12
Powerplant FTE expended: 0
GSE: 21.3ATR Environmental control system (ECS) testers
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The prescriptive strategy demonstrates an improvement in operational outcomes at the 

cost of increased execution time. While the execution time for the prescriptive approach is 780 

seconds, compared to just 6 seconds for the non-prescriptive approach, this trade-off yields 

substantial benefits. Dispatch reliability improves from 73.12% to 99.53%, reflecting a 26.41% 

increase, indicating more consistent and dependable operations and the achievement of a 

dispatch reliability which is comparable to the best industry practices162,163. Profitability under 

the prescriptive approach rises dramatically, with an additional $297.132.592 in profit, driven 

by a revenue boost of $290.651.904 and a cost reduction of $6,480,688. 

Table 4.35 – Case Study 3 results. 

Metric Non-prescriptive Prescriptive Difference 

Execution time 6 seconds 780 seconds 774 seconds 

Dispatch reliability 73,12% 99,53% 26,41% 

Profitability $ 97.206.888,00 $ 394.339.480,00 $ 297.132.592,00 

Revenue $ 119.810.304,00 $ 410.462.208,00 $ 290.651.904,00 

Cost $ 22.603.416,00 $ 16.122.728,00 $ 6.480.688,00 

 

4.4 Results Summary 
 

The Framework proved to be effective in both commercial aviation and healthcare case 

studies. Table 4.36 provides a summary of how each experiment addressed the key research 

questions, demonstrating the versatility and effectiveness of the Holistic Optimization 

Framework for PsM. Each experiment was designed to evaluate specific aspects of the 

framework’s capabilities across different operational contexts, providing comprehensive 

insights into its potential applications. 
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Experiment 1 focused on evaluating maintenance operations within the aviation sector, 

demonstrating how the framework optimizes maintenance resources. It also addressed 

maintenance imperfections by considering the wiener equation. The results showed an 

improvement in aircraft availability (+35.16%) and profitability (+0.81%), validating the 

framework’s ability to provide an optimized maintenance recommendation. 

Experiment 2 extended the framework to the healthcare sector during a pandemic. By 

modeling hospital operations and patient admissions, the experiment illustrated the method’s 

ability to optimize resources and support decisions in critical situations. The framework 

improved potential survivorship by 65%, emphasizing its value in life-critical scenarios and 

highlighting its scalability.  

Experiment 3 revisited the aviation sector with a focus on short-term (14 days) 

operations and variability of support across hubs. The results revealed an increase in 

profitability (+406%) and dispatch reliability (+26.41%), reaffirming the value of prescriptive 

maintenance in improving both operational and financial outcomes. 

Together, these experiments illustrate how the PsM framework addresses the study’s 

core research questions, from optimizing maintenance resources to adapting across industries, 

and delivering data-driven, actionable insights to improve efficiency and outcomes. 

 
 Table 4.36 –Results summary. 

Research questions Experiment 1 Experiment 2 Experiment 3 

Are 

maintenance 

resources 

considered? 

Infrastructure 
   

Labor   
 

Tools   
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Research questions Experiment 1 Experiment 2 Experiment 3 

Are maintenance imperfections 

considered? 
 

  

Is the method extensible to different 

assets? 
   

Is the method adaptable to different 

industries (health/aerospace)? 
   

Does it provide optimized 

maintenance course of action? 
   

Are 

maintenance and 

operations 

efficiency 

improved? 

Potential 

Survivorship 
 Not applicable 707 (+65%) Not applicable 

Availability 
99,84% 

(+35,16%) 
Not applicable 

99,53%  

(+ 26,41%) 

Profitability 
$ 15.223.935,1

2 (+0,81%) 
Not applicable 

$ 297.132.592,00 

(+406%) 

 
 

The results presented in this Chapter show the practical impact and adaptability of the 

framework. By addressing research questions through experimental scenarios, this study has 

demonstrated the framework’s potential to enhance operations, resource allocation, and adapt 

to diverse industries and assets. However, while these findings highlight the framework’s 

potentials, they also reveal key challenges and limitations that must be addressed. Next Chapter 

is a reflection about the broader implications of this research, its constraints, and the future 

directions that could further extend the reach and impact of PsM. 
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5 Conclusion 
 

This research establishes the Holistic Optimization Framework for Prescriptive 

Maintenance as a pivotal solution for addressing the challenges faced by industries operating 

in dynamic environments. By combining predictive analytics, optimization algorithms, and 

resource allocation concepts, this framework goes beyond traditional maintenance approaches 

to prescribe actionable recommendations tailored to real-world constraints. 

Through the validation in three scenarios— two scenarios addressing regional airline 

operations and one adressing public health pandemic response—this thesis demonstrates the 

versatility and scalability of the PsM framework. In the aviation context, the experiments 

demonstrated that the framework is adaptable to assets of different technological maturities, 

provides optimized maintenance and operational course of actions considering available 

resources. Implementing this framework industry-wide could enable airlines to enhance 

operational efficiency by optimizing maintenance schedules, reducing downtimes, and 

improving asset availability, fostering effective resources deployment, delays, minimization 

and increase profitability, even amidst workforce shortages and stringent sustainability goals. 

In public health, the framework’s application in a pandemic case study highlights its 

ability to allocate critical resources effectively, prioritize patient admissions, and optimize 

hospital operations while demonstrating its scalability to different industries. Municipal health 

departments could adopt this framework to improve responsiveness during crises, ensure 

equitable distribution of care resources, and potentially increasing patients’ survival rates. 

Beyond emergencies, this adaptability suggests long-term improvements in health system 

efficiency, resource planning, and resilience against future challenges are achievable with the 

framework.  

The Holistic Optimization Framework for Prescriptive Maintenance developed in this 

research demonstrates its potential as a paradigm towards holistic decision-making in complex 
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and dynamic environments. However, as with any new paradigm, this work is not without its 

limitations, nor is it the final word in prescriptive maintenance methodology, and, as presented 

in Figure 5.1, more experiments are needed to test material constraints and explore other 

prescriptive methods to manage more parameters. Thus, the insights gained from this research 

reveal both the vast potential of the framework and the areas where future exploration is 

necessary to address current constraints and expand its applicability, as can be seen in the 

following Sections 5.1 and 5.2. 

 

 

Figure 5.1 – Hospital network location considered in the experiment. (Source: this author) 

 
 
5.1 Limitations 

 

This research faced limitations that impacted the ability to fully validate the proposed 

algorithm under more realistic conditions. A significant constraint was the lack of reliable data 

regarding health personnel availability and equipment, such as ventilators, at the peak of the 

epidemic. Additionally, while the MILP approach demonstrated its effectiveness in the case 

studies addressed, it may be inadequate for addressing more complex scenarios such as multiple 

failure modes per equipment, if hundred equipment are considered in a large fleet. The 

following limitations highlight these challenges: 

Potential Experiments

DataPrescriptive Method

Potential to improve 
maintenance & operation 
efficiency is real

More experiments are 
needed to test materials 
constraints

Reliable publicly available 
data is scarce

Other methods must be 
explored for operations with 
thousands or millions of 
assets
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• The lack of reliable data related the to the health personnel as well as the data related to 

the equipment (ventilators) available at each hospital at the time of the epidemic did not 

allow to fully test the algorithm. Real data would be needed to obtain feasible results. 

• The lack of data was also noticed for the airliner experiment. No public, up to date data 

regarding asset’s RUL, MTBUR and MTBUF could be accessed. Similarly, no exact 

numbers about available resources at each hangar could be found, although values could 

be estimated indirectly through public sources and industry experts. 

• MILP may not be suitable for more complex real-case scenarios that consider failure (such 

as several failure modes per equipment), or considerations of more detailed support 

systems such as shop repair personnel, logistic turn-around time, and material stock 

availability. 

• Recommendations based on optimization are not feasible for AI since not a lot of data is 

available to train AI algorithms.   

• Health experiment assumes that optimal admission duration is directly related to 

survivorship. This is a simplification, as other factors such as human genetics, existing 

pre-conditions and order of arrival play an important role in survivability chances. The 

presented result then is just a potential number of survivors, indicating that more people 

could be assisted for longer than the historical data showed. 

• If for physical assets, such as machines and vehicles, operation can be reorganized, 

stopped or increased, and their degradation estimated through PHM systems that 

continuously monitor them, that is not the case for humans. Although wearables are 

opening possibilities to do that, PHM for humans is still not available so the possibility to 

provide a course of action related to human operation is still very limited. 

The findings of this research provide valuable insights into optimization strategies for 

critical scenarios. However, the simplifications and assumptions, particularly in the health-
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related experiment, mean that the results are indicative rather than definitive. The challenges in 

integrating human-related factors and the absence of PHM systems for humans illustrate the 

need for future work to address these gaps, as presented in the next Section.  

 

5.2 Future Work 
 

Leveraging the limitations and insights of this research, there are promising directions 

for future work that can refine and expand the proposed framework. As operational contexts 

become increasingly complex and interconnected, addressing challenges such as equipment 

failures, material logistics, and computational constraints will be crucial. Furthermore, the 

growing integration of advanced technologies and prescriptive analytics methods, such as AI, 

heuristics, and digital twins, offers exciting opportunities to enhance the framework. Looking 

ahead, the future work could address the following themes: 

• The refinement of the optimization model with the adoptions of heuristics to address a 

wider array of maintenance complexities, down to the hundreds of equipment failures, and 

deal with more complexity related to material logistic uncertainties.  

• In the health experiment became clear that as the number of assets and support 

characteristics grew, the processing time could be a strong limitation. Future work could 

explore other methods such as genetics algorithms to get solutions faster. 

• Although this author does not see potential in AI to provide optimized recommendations 

based on real-time asset state, inputs based on artificial intelligence analysis providing 

failure prognostics or troubleshooting diagnostics to improve prescription represent an 

opportunity for future development. 

• Integration with AR/VR systems and integrated electronic technical publications (IETP) 

to provide maintenance recommendations to technicians should also be explored.  
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• If this study has focused somewhere in the middle between support environment and 

operations, future work could focus on the MRO “one-day problem”: in this context, the 

MRO represents the operational universe with resources that must be optimally deployed 

to provide maintenance to the aircraft that is arriving to undergoes maintenance. Similarly, 

for the health industry, the hospital can be seen as a support organization with various 

resources that need to be continuously optimized to provide the best health care possible 

(“the emergency room problem”). 

• As healthcare is shifting towards more proactive approaches with the advent of wearables 

that monitor vital signs, the research could focus on the inclusion of a model simulating 

“PHM for humans”, to evaluate how this prognostic technology, coupled with a 

prescriptive framework, could provide better care and potentially save more lives by 

recommending the best course of action to patients and health practitioners, leveraging 

real-time data.  

Future research in this domain holds significant potential to revolutionize industry 4.0 

operations, including the healthcare systems. By leveraging advancements in AI and wearables, 

the proposed framework can evolve into a powerful tool for addressing complex, real-time 

challenges in the health industry. 

Through continuous exploration and refinement, this framework has the potential to 

serve as pillar for advancing prescriptive strategies across industries. By embracing PsM, 

organizations can shift from reactive and scheduled maintenance approaches to proactive, data-

driven decision-making that holistically integrates maintenance and operations. This paradigm 

not only drives operational excellence but also promotes long-term sustainability, positioning 

industries to meet the challenges of an increasingly dynamic and interconnected world. 
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Appendix A – Experiments Results 
 

A.1 Experiment 1: Non-Prescriptive Schedule Results   
 

Full data is available on file “Appendix A.docx” shared through the link: 

https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip 

 

A.2 Experiment 1: Prescriptive Schedule Results   
 

Full data is available on file “Schedule_results_pampulha.xlsx” and 

“Schedule_results_campinas.xlsx” shared through the link: 

https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip 

 
 

A.3 Experiment 1: New MTBURs Evaluated Considering Maintenance 
Imperfections 

   
Full data is available on file “Maint_Imperfections.docx” shared through the link: 

https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip 

 

 

A.4 Experiment 2: Optimal Patients Admissions   
 

Full data is available on file “Opt_Patients_Adm.docx” shared through the link: 

https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip 

 

 

A.5 Experiment 3: Maintenance Task Prescription C-check 
 

Full data is available on file “Maintenance Task Presciption C-check.docx”, shared 

through the link: https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip 

 

https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip
https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip
https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip
https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip
https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip
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A.6 Experiment 3: Maintenance Task Prescription A-check 
 

Full data is available on file “Maintenance Task Presciption A-check.docx”, shared 

through the link: https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip 

 

A.7 Experiment 3: Unscheduled Maintenance Task Prescription 
 

Full data is available on file “Unscheduled Maintenance Task Presciption.docx”, shared 

through the link: https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip
https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip
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Appendix B – Case Study 1 Inputs 
 

B.1 Experiment 1: Full Airliner Operation Description  
 

Full data is available on file “Airliner_Operation_rev4.xlsx” shared through the link: 

https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip 

 

B.2 Experiment 1: MTBUR List  
 

Full data is available on file “MTBUR List.xlsx” shared through the link: 

https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip 

 

B.3 Experiment 1: Flight Hours & Maintenance Events  
 

Full data is available on file “Flight_Hours_and_Maintenance_Events.xlsx” shared through the 

link: https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip 

 

B.4 Experiment 1: C-check Events 
 

Full data is available on file “Flight_Hours_and_Maintenance_Events.xlsx” shared through the 

link: https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip 

 

B.5 Experiment 1: A-check Events 
 

Full data is available on file “Flight_Hours_and_Maintenance_Events.xlsx” shared through the 

link: https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip 

 

B.6 Experiment 1: Unscheduled Events PHM Adjusted 
 

Full data is available on file “Flight_Hours_and_Maintenance_Events.xlsx” shared through the 

link: https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip 

https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip
https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip
https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip
https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip
https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip
https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip
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Appendix C – Case Study 2 Inputs 
C.1 Experiment 2: Patients Data Extraction 

 

Patient Age Gender City Admission 
day 

Discharge 
day 

Patient 
deceased? 

Hospital 

316102723855 37 F JACAREI 09/01/21 09/01/21 Y P A UNIMED 

ESTACAO 

JACAREI 

316103926076 55 F SAO 

PAULO 
08/01/21 08/01/21 Y HOSPITAL 

ADVENTISTA 

DE SAO PAULO 

316153503977 64 F JACAREI 09/03/21 14/03/21 Y SANTA CASA 

DE 

MISERICORDIA 

DE JACAREI 

316154657780 74 M JACAREI 10/03/21 30/03/21 Y SANTA CASA 

DE 

MISERICORDIA 

DE JACAREI 

316159047888 52 F JACAREI 08/03/21 10/05/21 Y HOSPITAL SAO 

FRANCISCO DE 

ASSIS 

316165310935 40 M JACAREI 23/03/21 25/03/21 Y HOSPITAL 

ALVORADA 

JACAREI 

316175982613 76 M JACAREI 04/04/21 04/04/21 Y SANTA CASA 

DE 

MISERICORDIA 

DE JACAREI 

316188341754 69 F JACAREI 17/04/21 17/04/21 Y SANTA CASA 

DE 

MISERICORDIA 

DE JACAREI 

316188353747 30 M JACAREI 18/04/21 18/04/21 Y SANTA CASA 

DE 

MISERICORDIA 

DE JACAREI 

316201358091 63 M JACAREI 03/05/21 03/05/21 Y HOSPITAL SAO 

FRANCISCO DE 

ASSIS 

316214254852 58 M SAO 

JOSE 

DOS 

CAMPOS 

18/05/21 29/05/21 Y HOSPITAL SAO 

JOSE 

316222257918 83 F JACAREI 28/05/21 30/05/21 N HOSPITAL SAO 

FRANCISCO DE 

ASSIS 

316250475696 84 M JACAREI 22/05/21 22/05/21 Y SANTA CASA 

DE 

MISERICORDIA 

DE JACAREI 

316257521356 66 M JACAREI 05/07/21 07/07/21 Y SANTA CASA 

DE 

MISERICORDIA 

DE JACAREI 

316279233884 86 M JACAREI 05/08/21 05/08/21 Y SANTA CASA 

DE 
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Patient Age Gender City Admission 
day 

Discharge 
day 

Patient 
deceased? 

Hospital 

MISERICORDIA 

DE JACAREI 

316281696025 36 F JACAREI 11/09/21 11/09/21 N SANTA CASA 

DE 

MISERICORDIA 

DE JACAREI 

316315397794 47 M JACAREI 09/11/21 09/11/21 N HOSPITAL 

VIVALLE 

316365418431 33 M SAO 

JOSE 

DOS 

CAMPOS 

13/11/21 29/11/21 N HOSPITAL SAO 

FRANCISCO DE 

ASSIS 

316383654914 2 M JACAREI 20/01/21 21/01/21 Y SANTA CASA 

DE 

MISERICORDIA 

DE JACAREI 

316109751326 41 F SAO 

JOSE 

DOS 

CAMPOS 

25/01/21 26/01/21 N HOSPITAL SAO 

JOSE 

316111526925 83 M JACAREI 22/01/21 23/01/21 Y HOSPITAL SAO 

JOSE 

316116792893 31 M SAO 

JOSE 

DOS 

CAMPOS 

11/02/21 13/02/21 Y HOSPITAL SAO 

FRANCISCO DE 

ASSIS 

316117557721 50 M SAO 

JOSE 

DOS 

CAMPOS 

18/02/21 19/02/21 N HOSPITAL SAO 

FRANCISCO DE 

ASSIS 

316133899607 60 F JACAREI 09/03/21 10/03/21 Y SANTA CASA 

DE 

MISERICORDIA 

DE JACAREI 

316139953293 54 F JACAREI 23/03/21 24/03/21 Y SANTA CASA 

DE 

MISERICORDIA 

DE JACAREI 

316153862233 74 F JACAREI 25/03/21 26/03/21 N HOSPITAL SAO 

FRANCISCO DE 

ASSIS 

316165896255 85 F JACAREI 26/04/21 27/04/21 Y HOSPITAL SAO 

FRANCISCO DE 

ASSIS 

316167712390 42 F JACAREI 02/05/21 03/05/21 Y HOSPITAL SAO 

FRANCISCO DE 

ASSIS 

316195488364 62 F JACAREI 09/05/21 10/05/21 Y HOSPITAL DE 

CLINICAS 

ANTONIO 

AFONSO 

316200620196 63 M JACAREI 06/05/21 11/05/21 Y SANTA CASA 

DE 

MISERICORDIA 

DE JACAREI 
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Patient Age Gender City Admission 
day 

Discharge 
day 

Patient 
deceased? 

Hospital 

316206705923 82 M JACAREI 11/05/21 12/05/21 Y SANTA CASA 

DE 

MISERICORDIA 

DE JACAREI 

316208361422 56 F JACAREI 18/05/21 19/05/21 Y SANTA CASA 

DE 

MISERICORDIA 

DE JACAREI 

316208376525 52 F JACAREI 01/06/21 02/06/21 N HOSPITAL 

VIVALLE 

316215108843 19 M JACAREI 08/06/21 09/06/21 Y SANTA CASA 

DE 

MISERICORDIA 

DE JACAREI 

316225450163 39 F SAO 

JOSE 

DOS 

CAMPOS 

17/06/21 18/06/21 Y SANTA CASA 

DE 

MISERICORDIA 

DE JACAREI 

316232399415 55 M JACAREI 21/06/21 22/06/21 N HOSPITAL 

VIVALLE 

316240206051 72 M JACAREI 21/06/21 22/06/21 Y SANTA CASA 

DE 

MISERICORDIA 

DE JACAREI 

316243716458 48 M SAO 

JOSE 

DOS 

CAMPOS 

27/06/21 04/07/21 Y HOSPITAL 

POLICLIN 

316243799860 77 F JACAREI 27/06/21 28/06/21 N HOSPITAL 

VIVALLE 

316248711904 85 F SAO 

JOSE 

DOS 

CAMPOS 

07/07/21 08/07/21 N HOSPITAL 

VIVALLE 

316248847482 42 M SAO 

JOSE 

DOS 

CAMPOS 

10/07/21 17/07/21 Y HOSPITAL SAO 

JOSE 

316257602059 43 F SAO 

JOSE 

DOS 

CAMPOS 

11/07/21 28/07/21 Y HOSPITAL SAO 

FRANCISCO DE 

ASSIS 

316260975874 58 M SAO 

JOSE 

DOS 

CAMPOS 

08/08/21 09/08/21 Y HOSPITAL SAO 

FRANCISCO DE 

ASSIS 

316260998826 40 M JACAREI 30/08/21 31/08/21 N HOSPITAL SAO 

FRANCISCO DE 

ASSIS 

316285175852 86 F JACAREI 25/09/21 26/09/21 N HOSPITAL 

VIVALLE 

316302704791 82 F JACAREI 24/09/21 25/09/21 N HOSPITAL SAO 

FRANCISCO DE 

ASSIS 
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Patient Age Gender City Admission 
day 

Discharge 
day 

Patient 
deceased? 

Hospital 

316304125554 72 M JACAREI 02/10/21 03/10/21 Y SANTA CASA 

DE 

MISERICORDIA 

DE JACAREI 

316326526003 66 M SAO 

JOSE 

DOS 

CAMPOS 

30/12/21 31/12/21 N HOSPITAL 

VIVALLE 

316327505120 42 M JACAREI 08/01/21 10/01/21 N HOSPITAL SAO 

FRANCISCO DE 

ASSIS 

316333664459 76 M JACAREI 23/01/21 25/01/21 Y DR RUBENS 

SAVASTANO 

HOSPITAL 

REGIONAL DE 

SAO JOSE DOS 

CAMPOS 

 

 

 

C.2 Experiment 2: Hospitals’ ICU Capability  
 

 

Hospital ICU 

Hospital 1 15 

Hospital 2 30 

Hospital 3 41 

Hospital 4 24 

Hospital 5 59 

Hospital 6 15 

Hospital 7 15 

Hospital 8 22 

Hospital 9 15 

Hospital 10 16 



   177 
 
 

Hospital ICU 

Hospital 11 12 

Hospital 12 106 

Hospital 13 15 

Hospital 14 21 

Hospital 15 23 

Hospital 16 10 

Hospital 17 49 

Hospital 18 15 

Hospital 19 46 

Hospital 20 30 

Hospital 21 113 

Hospital 22 106 

Hospital 23 82 

Hospital 24 80 

Hospital 25 411 

Hospital 26 64 

Hospital 27 108 

Hospital 28 26 

Hospital 29 15 

Hospital 30 15 

Hospital 31 104 

Hospital 32 15 
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Hospital ICU 

Hospital 33 15 

Hospital 34 16 

Hospital 35 11 

Hospital 36 15 

Hospital 37 83 

Hospital 38 15 

Hospital 39 20 

Hospital 40 19 

Hospital 41 54 

Hospital 42 49 

Hospital 43 72 

Hospital 44 20 

Hospital 45 33 

Hospital 46 200 

Hospital 47 44 

Hospital 48 26 

Hospital 49 100 

Hospital 50 52 

Hospital 51 15 

Hospital 52 26 

Hospital 53 15 

Hospital 54 22 
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Hospital ICU 

Hospital 55 100 

Hospital 56 1 
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Appendix D – Case Study 3 Inputs 
 

D.1 Experiment 3: Hangars’ Support Capability  
 

Full data is available on file “Airliner station data_rev4.xlsx” shared through the link: 

https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip 

 

D.2 Experiment 3: C-check Maintenance Tasks  
 

Full data is available on file “CheckC Maint_Plan_rev2_A330_A350.xlsx”, “CheckC 

Maint_Plan_rev2_Cessna.xlsx”, “CheckC Maint_Plan_rev2_E1_ATR.xlsx” and “CheckC 

Maint_Plan_rev2_E2_A320_A321.xlsx” shared through the link: 

https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip 

 

D.3 Experiment 3: A-check Maintenance Tasks  
 

Full data is available on file “CheckA Maint_Plan_rev2_A330_A350.xlsx”, “CheckA 

Maint_Plan_rev2_Cessna.xlsx”, “CheckA Maint_Plan_rev2_E1_ATR.xlsx” and “CheckA 

Maint_Plan_rev2_E2_A320_A321.xlsx” shared through the link: 

https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip 

 

 

D.4 Experiment 3: Unscheduled Maintenance Tasks  
 

Full data is available on file “unscheduled_maintenance_tasks.xlsx”, shared through the 

link: https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip 

 

 

 

 

 

https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip
https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip
https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip
https://www.aerologlab.ita.br/static/datafiles/alessandro_giacotto.zip
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Appendix E – ATA Chapters List 
 

ATA Chapter ATA Chapter Description 

ATA 00 GENERAL 

ATA 01 MAINTENANCE POLICY 

ATA 02 OPERATIONS 

ATA 03 SUPPORT 

ATA 04 AIRWORTHINESS LIMITATIONS 

ATA 05 TIME LIMITS/MAINTENANCE CHECKS 

ATA 06 DIMENSIONS AND AREAS 

ATA 07 LIFTING AND SHORING 

ATA 08 LEVELING AND WEIGHING 

ATA 09 TOWING AND TAXIING 

ATA 10 
PARKING, MOORING, STORAGE AND RETURN TO 

SERVICE 

ATA 11 PLACARDS AND MARKINGS 

ATA 12 SERVICING 

ATA 13 HARDWARE AND GENERAL TOOLS 

ATA 15 AIRCREW INFORMATION 

ATA 16 CHANGE OF ROLE 

ATA 18 
VIBRATION AND NOISE ANALYSIS (HELICOPTER 

ONLY) 

ATA 20 STANDARD PRACTICES- AIRFRAME 

ATA 21 AIR CONDITIONING AND PRESSURIZATION 
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ATA 22 AUTO FLIGHT 

ATA 23 COMMUNICATIONS 

ATA 24 ELECTRICAL POWER 

ATA 25 EQUIPMENT / FURNISHINGS 

ATA 26 FIRE PROTECTION 

ATA 27 FLIGHT CONTROLS 

ATA 28 FUEL 

ATA 29 HYDRAULIC POWER 

ATA 30 ICE AND RAIN PROTECTION 

ATA 31 INDICATING / RECORDING SYSTEM 

ATA 32 LANDING GEAR 

ATA 33 LIGHTS 

ATA 34 NAVIGATION 

ATA 35 OXYGEN 

ATA 36 PNEUMATIC 

ATA 37 VACUUM 

ATA 38 WATER / WASTE 

ATA 39 
ELECTRICAL - ELECTRONIC PANELS AND 

MULTIPURPOSE COMPONENTS 

ATA 40 MULTISYSTEM 

ATA 41 WATER BALLAST 

ATA 42 INTEGRATED MODULAR AVIONICS 

ATA 43 EMERGENCY SOLAR PANEL SYSTEM (ESPS) 

ATA 44 CABIN SYSTEMS 
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ATA 45 ONBOARD MAINTENANCE SYSTEMS (OMS) 

ATA 46 INFORMATION SYSTEMS 

ATA 47 INERT GAS SYSTEM 

ATA 48 IN FLIGHT FUEL DISPENSING 

ATA 49 (AIRBORNE) AUXILIARY POWER UNIT 

ATA 50 CARGO AND ACCESSORY COMPARTMENTS 

ATA 51 
STANDARD PRACTICES AND STRUCTURES - 

GENERAL 

ATA 52 DOORS 

ATA 53 FUSELAGE 

ATA 54 NACELLES / PYLONS 

ATA 55 STABILIZERS 

ATA 56 WINDOWS 

ATA 57 WINGS 

ATA 60 STANDARD PRACTICES - PROP./ROTOR 

ATA 61 PROPELLER / PROPULSORS 

ATA 62 MAIN ROTOR(S) 

ATA 63 MAIN ROTOR DRIVE(S) 

ATA 64 TAIL ROTOR 

ATA 65 TAIL ROTOR DRIVE 

ATA 66 FOLDING BLADES/PYLON 

ATA 67 ROTORS AND FLIGHT CONTROLS 

ATA 70 STANDARD PRACTICES - ENGINE 

ATA 71 POWER PLANT 
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ATA 72 ENGINE 

ATA 72 
ENGINE - TURBINE/TURBOPROP, DUCTED 

FAN/UNDUCTED FAN 

ATA 72 ENGINE - RECIPROCATING 

ATA 73 ENGINE - FUEL AND CONTROL 

ATA 74 IGNITION 

ATA 75 BLEED AIR 

ATA 76 ENGINE CONTROLS 

ATA 77 ENGINE INDICATING 

ATA 77 ENGINE INDICATING 

ATA 78 EXHAUST 

ATA 79 OIL 

ATA 80 STARTING 

ATA 81 TURBINES (RECIPROCATING ENGINES) 

ATA 82 WATER INJECTION 

ATA 83 ACCESSORY GEAR BOX (ENGINE DRIVEN) 

ATA 84 PROPULSION AUGMENTATION 

ATA 85 FUEL CELL SYSTEMS 
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